Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.

Bonjour , j’aurais besoin d’aide pour un dm de maths niveau terminale et je suis vraiment coincée : voici l’exo

On considère la fonction f définie sur R par f(x)= e^x-x

1) dressez le tableau de variation de f sur R
2) en déduire que , pour tout x appartenant à R , f(x)>0
3) en déduire que limite e^x=+infini quand x tend vers +infini
4) en posant X=-x , démontrez que limite e^x=0 quand x tend vers -infini

Merci d’avance pour vos réponses


Sagot :

Bonjour,

1) f(x) = eˣ - x

f'(x) = eˣ - 1

f'(x) = 0 ⇒ eˣ = 1 ⇒ x = 0

x      -∞                  0                  +∞

f'(x)             -          0        +

f(x)          décrois.       crois.

2) f atteint un minimum en x = 0 et vaut alors f(0) = 1

⇒ pour tout x appartenant à R, f(x) ≥ 1 > 0

3) Pour tout x réel, f(x) > 0

⇔ eˣ - x > 0

⇔ eˣ > x

⇒ lim quand x→+∞ eˣ > lim quand x→+∞ x

Or lim quand x→ +∞ x = +∞

⇒ lim quand x→ +∞ eˣ = +∞

4) On pose X = -x

⇒ lim quand x→ -∞ eˣ = lim quand X→ +∞ e^(-X)

⇒ lim quand X→ +∞ e^(-X) = +∞

⇒ lim quand X→ +∞ 1/e^(X) = 0⁺ car lim quand x→ +∞ e^(X) = +∞

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.