Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.
Sagot :
Réponse :
Explications étape par étape
Un entier de Gauss est un nombre complexe de la forme
g=a+ib où a et b sont des nombres entiers.
1. Montrer que la somme et le produit de deux entiers
de Gauss sont des entiers de Gauss.
g+g' =(a+a')+i(b+b')
gg' =(aa'-bb')+i(ab'+a'b)
2. Montrer que les seuls entiers de Gauss dont l'inverse
est aussi un entier de Gauss sont 1;-1;i et -i.
si g est un entier de Gauss alors a et b sont entiers
donc |g| = a² +b² est entier
et l'inverse | 1/g| = 1/(a²+b²) est entier
d'où a²+b² = 1
alors a² =1 et b=0 ou b² =1 et a = 0
d'où la réponse
3. Si g désigne un entier de Gauss, montrer qu'il existe
un polynôme de degré 2 à coefficients entiers qui
s'annule en g.
(z-g)² = z² -2gz + g² s'annule en g
4. a. Montrer que le quotient de deux entiers de Gauss
s'écrit sous la forme x+iy où x et y sont des nombres
rationnels.
g/g' = (a+ib)(a'-ib') / (a'2 + b'2) =( ( aa'+bb') + i( ba'-ab') ) / (a'² + b'²)
x = (aa'+bb') /(a'²+b'²) est un nombre rationnel comme y
b. le nombre complexe
1/2 + i V3/2 n’est
pas le quotient de deux entiers de Gauss. car [tex]\sqrt{3}[/tex] /2 n'est pas rationnel
Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.