Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

salut ! j'ai un exercice et s'il vous plaît m'aider de trouver la solution
On considère les deux nombres entiers naturels a et b tels que :ab=2560 et pgcd(a;b)=16
1)-Déterminer ppcm (a;b)
2)-Déterminer les facteurs premiers communs dans la décomposition de a et b
3)-Déterminer les nombres a et b​

Sagot :

Réponse :

soit 2 nombres a et b:

a x b = 2560

et PGCD(a ; b) = 16   (le plus grand commun diviseur de a et b est 16)

on pose 2 nombres x, y  ∈ N  tel que x et y soient premiers entre eux

on a alors 2 égalités:

a = 16.x

b = 16.y

1) le PPCM de a et b est le plus petit commun diviseur multiple.

on a alors PPCM(a;b) = 16.x.y

or x = a/16

et y =b/16

alors PPCM(a;b) = 16*x*y = 16 * (a/16) * (b/16)

                           = ab/16

or ab=2560 alors PPCM(a;b) =2560/16

PPCM(a;b) = 160

2)

Quel nombre faut-il multiplier par 16 (PGCD) pour obtenir 160 (PPCM) ?

160/16 = 10

quel nombre premier entre eux ont pour produit 10?

10 = 2 x 5

or  on sait (voir précédemment) a = 16.x  et b = 16.y

alors a = 16 x 2 = 32

et b= 5 x16  =  80

on conclut que les nombres a et b sont respectivement 32 et 80.

j'espère avoir aidé.

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.