Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.

bonjour j’ai besoin de l’aide pour l’exercice 2 ou je n’ai vraiment rien compris et pour l’exercice 3 je trouve pas l’expression un afin de faire la deuxième étape et ça me bloque tout du coup
ça serait très gentil de votre part de m’expliquer


Bonjour Jai Besoin De Laide Pour Lexercice 2 Ou Je Nai Vraiment Rien Compris Et Pour Lexercice 3 Je Trouve Pas Lexpression Un Afin De Faire La Deuxième Étape Et class=

Sagot :

Réponse :

Bonjour

Exercice 2

f(x) = (x - 1)([tex]\sqrt{x^{2}+1 }[/tex])

on a une fonction de la forme u.v avec u(x) = x - 1 et v(x) = [tex]\sqrt{x^{2} +1}[/tex]

La dérivée de f sera de la forme u'.v + u v'

avec u'(x) = 1 et v'(x) = [tex]\frac{2x}{2\sqrt{x^{2} +1} }[/tex] = [tex]\frac{x}{\sqrt{x^{2} +1} }[/tex]

donc f'(x) = 1 × [tex]\sqrt{x^{2} +1}[/tex] + (x - 1) × [tex]\frac{x}{\sqrt{x^{2} +1} }[/tex]

f'(x) = [tex]\frac{(\sqrt{x^{2} +1})(x^{2} +1) }{x^{2} +1} + \frac{(x^{2} -x)(\sqrt{x^{2} +1}) }{x^{2} +1}[/tex]

f'(x) = [tex]\frac{(\sqrt{x^{2} +1})(x^{2} +1+x^{2} -x) }{x^{2} +1}[/tex]

f'(x) = (2x² - x + 1)([tex]\frac{\sqrt{x^{2} +1} }{x^{2} +1}[/tex])

Exercice 3

a) On peut conjecturer que uₙ = 5ⁿ - 1

b) Soit P(n) la propriété : uₙ = 5ⁿ - 1

Initialisation :

u₀ = 0 et 5° - 1 = 1 - 1 = 0

P(0) est donc vraie

Hérédité :

Soit un certain n tel que uₙ = 5ⁿ - 1

Démontrons que uₙ₊₁ = 5ⁿ⁺¹ - 1

On a uₙ₊₁ = 4 + 5uₙ

⇔ uₙ₊₁ = 4 + 5(5ⁿ - 1)      (par hypothèse de récurrence)

⇔ uₙ₊₁ = 4 + 5×5ⁿ - 5 = 5ⁿ⁺¹ - 1

Donc P(n+1) est vraie lorsque P(n) est vraie

La propriété P(n) est donc héréditaire

Conclusion :

La propriété P(n) est vraie au rang 0 , et elle est héréditaire.

Donc quelque soit n entier naturel, uₙ = 5ⁿ - 1

Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.