Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.
Sagot :
Bonjour,
J'imagine que l'énoncé précise que n doit être un nombre entier.
Et alors, soit il est pair et n+1 est impair et donc n(n+1) est pair
soit il est impair et n+1 est pair et donc n(n+1) est pair
Donc dans tous les cas n(n+1) est pair donc divisible par 2
donc n(n+1)/2 est un entier
merci
Accessoirement c'est aussi égal à 1+2+...+n mais c'est pas demandé ni nécessaire ici
Bonjour,
n(n+1) correspond au produit de deux entiers consécutifs donc cela donnera un entier pair où k ∈ N, on peut ainsi écrire :
n(n + 1) = 2k
donc en multipliant le tout par 1/2 on obtient :
[tex]n(n + 1) \times \frac{1}{2} = 2k \times \frac{1}{2} [/tex]
[tex] \frac{n(n + 1)}{2} = \frac{2k}{2} [/tex]
[tex] \frac{n(n + 1)}{2} = k[/tex]
Or pour rappel k ∈ N donc n(n+1)/2 ∈ N
Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.