Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour,
quelqu'un pourrait m'aider pour mon DM de maths svp ?

Je vous remercie d'avance


Bonjour Quelquun Pourrait Maider Pour Mon DM De Maths Svp Je Vous Remercie Davance class=

Sagot :

Tenurf

Bonjour,

On va suivre l'énoncé et utiliser les sommes de Riemann.

La fonction qui à un réel quelconque lui associe son cube est une fonction continue et à ce titre elle est intégrable sur IR.

Donc, comme l intégrale est bien définie nous pouvons prendre x positif

En effet, si x est négatif on peut toujours revenir au cas où x est positif par permutation des bornes d'intégration.

Comme l 'intégrale est bien défnie nous savons aussi qu 'elle est la limite de suites de Riemann, du style

[tex]\displaystyle \int\limits^x_0 {t^3} \, dt =\lim_{n\rightarrow +\infty} \sum_{k=0}^n \, f(x_k^*)\delta(x_k)[/tex]

Donc on va découper le segment [0;x] en n segments et prendre les [tex]x_k^*[/tex] ou l'on veut dans ces sous-segment. On sait que dans tous les cas ça converge vers l'intégrale.

Prenons ce qui parait le plus naturel donc

[tex]\delta(x_k)=\dfrac{x}{n} \\\\x_k^*=k\delta(x_k)=\dfrac{kx}{n}[/tex]

Et alors, on a

[tex]\displaystyle \int\limits^x_0 {t^3} \, dt =\lim_{n\rightarrow +\infty} \sum_{k=0}^n \, f(x_k^*)\delta(x_k) \\\\=\lim_{n\rightarrow +\infty} \sum_{k=0}^n \, f(\dfrac{xk}{n})\dfrac{x}{n}\\\\ =\lim_{n\rightarrow +\infty} \sum_{k=0}^n \, \dfrac{x^3k^3}{n^3}\times \dfrac{x}{n}\\ \\ =\lim_{n\rightarrow +\infty} \dfrac{x^4}{n^4} \sum_{k=0}^n \, k^3\\ \\=\lim_{n\rightarrow +\infty} \dfrac{x^4}{n^4} \dfrac{(n(n+1))^2}{4}\\ \\=\lim_{n\rightarrow +\infty} x^4 \dfrac{(1+1/n)^2}{4}\\ \\=\dfrac{x^4}{4}[/tex]

Et voilà!

Et ça reste cohérent avec ce que l'on connait sur la dérivation, ouf!

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.