Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Bonjour,
quelqu'un pourrait m'aider pour mon DM de maths svp ?

Je vous remercie d'avance

Bonjour Quelquun Pourrait Maider Pour Mon DM De Maths Svp Je Vous Remercie Davance class=

Sagot :

Tenurf

Bonjour,

On va suivre l'énoncé et utiliser les sommes de Riemann.

La fonction qui à un réel quelconque lui associe son cube est une fonction continue et à ce titre elle est intégrable sur IR.

Donc, comme l intégrale est bien définie nous pouvons prendre x positif

En effet, si x est négatif on peut toujours revenir au cas où x est positif par permutation des bornes d'intégration.

Comme l 'intégrale est bien défnie nous savons aussi qu 'elle est la limite de suites de Riemann, du style

[tex]\displaystyle \int\limits^x_0 {t^3} \, dt =\lim_{n\rightarrow +\infty} \sum_{k=0}^n \, f(x_k^*)\delta(x_k)[/tex]

Donc on va découper le segment [0;x] en n segments et prendre les [tex]x_k^*[/tex] ou l'on veut dans ces sous-segment. On sait que dans tous les cas ça converge vers l'intégrale.

Prenons ce qui parait le plus naturel donc

[tex]\delta(x_k)=\dfrac{x}{n} \\\\x_k^*=k\delta(x_k)=\dfrac{kx}{n}[/tex]

Et alors, on a

[tex]\displaystyle \int\limits^x_0 {t^3} \, dt =\lim_{n\rightarrow +\infty} \sum_{k=0}^n \, f(x_k^*)\delta(x_k) \\\\=\lim_{n\rightarrow +\infty} \sum_{k=0}^n \, f(\dfrac{xk}{n})\dfrac{x}{n}\\\\ =\lim_{n\rightarrow +\infty} \sum_{k=0}^n \, \dfrac{x^3k^3}{n^3}\times \dfrac{x}{n}\\ \\ =\lim_{n\rightarrow +\infty} \dfrac{x^4}{n^4} \sum_{k=0}^n \, k^3\\ \\=\lim_{n\rightarrow +\infty} \dfrac{x^4}{n^4} \dfrac{(n(n+1))^2}{4}\\ \\=\lim_{n\rightarrow +\infty} x^4 \dfrac{(1+1/n)^2}{4}\\ \\=\dfrac{x^4}{4}[/tex]

Et voilà!

Et ça reste cohérent avec ce que l'on connait sur la dérivation, ouf!

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.