Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Trouvez des solutions rapides et fiables à vos interrogations grâce à une communauté d'experts dévoués. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

Bonjour,
quelqu'un pourrait m'aider pour mon DM de maths svp ?

Je vous remercie d'avance


Bonjour Quelquun Pourrait Maider Pour Mon DM De Maths Svp Je Vous Remercie Davance class=

Sagot :

Tenurf

Bonjour,

Pour le 2, je n'ai pas pu assister au cours, du coup je sais pas quelle méthode vous avez vue.

Par contre, pour le 1, je vais t'aider et poste d'autre questions pour le reste, stp car ton devoir est un peu long.

Nous voulons calculer

[tex]\displaystyle \int\limits^e_1 {ln^2x} \, dx[/tex]

Tout d'abord, la fonction ln est bien définie et intégrable sur cet intervalle comme il s'agit d'une fonction continue sur [1;e].

Nous allons procéder comme l'énoncé le stipule par une intégration par parties

pour tout x réel de [1;e], soient u et v les fonctions suivantes, ainsi que leur dérivées,

u(x) = x

u'(x)=1

v(x)=[tex]ln^2x[/tex]

[tex]v'(x)=\dfrac{2lnx}{x}[/tex]

Alors notre intégrale devient

[tex]\displaystyle \int\limits^e_1 {ln^2x} \, dx=\int\limits^e_1 {u'(x)v(x)} \, dx\\ \\=[u(x)v(x)]_1^e-\int\limits^e_1 {u(x)v'(x)} \, dx \\ \\=[xln^2x]_1^e-\int\limits^e_1 {2lnx} \, dx \\\\=e-2\int\limits^e_1 {lnx} \, dx[/tex]

En général, arrivé à ce stade, on a le souvenir vague que nous avons vu une primitive de ln(x) en cours, c'était quelque chose en x(ln(x)-1)

Mais bon, supposons que notre mémoire est défaillante et intéressons nous à

[tex]\displaystyle \int\limits^e_1 {lnx} \, dx[/tex]

u(x)=x, u'(x)=1

v(x)=lnx, v'(x)=1/x

[tex]\displaystyle \int\limits^e_1 {lnx} \, dx=\int\limits^e_1 {u'(x)v(x)} \, dx\\ \\=[u(x)v(x)]_1^e-\int\limits^e_1 {u(x)v'(x)} \, dx \\ \\=[xlnx]_1^e-\int\limits^e_1 {\dfrac{x}{x}} \, dx\\ \\=e-e+1=1[/tex]

De ce fait,

[tex]\displaystyle \int\limits^e_1 {ln^2x} \, dx\\ \\=e-2\int\limits^e_1 {lnx} \, dx\\\\=e-2[/tex]

Merci

Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.