Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Tout d'abord je tiens à vous remercier je suis en première année lycée mon problème est :soit n entier naturel on pose a=5×19^2n+1 - 23×19^2n et b = 2×19^n+1 + 10×19^n montrer que a est multiple de 72 et que b est multiple de 48 ​

Sagot :

Réponse :

Bonjour,

On va jouer de la factorisation pour écrire a = 72 fois un entier et b = 48 fois un entier.

Explications étape par étape

a = 5×19^(2n+1) - 23×19^2n

a = 5×19×19^2n - 23×19^2n

a = 95×19^2n - 23×19^2n

a = (95 - 23)×19^2n

a = 72×19^2n

avec 19^2n entier, donc a est bien un multiple de 72.

b = 2×19^(n+1) + 10×19^n

b = 2×19×19^n + 10×19^n

b = 38×19^n + 10×19^n

b = (38+10)×19^n

b = 48×19^n

avec 19^n entier, on a b de la forme 48 fois un entier, on peut affirmer que b est multiple de 48.

Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.