Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

maths expertes
Si quelqu'un pourrait m'aider s'il vous plaît, ça serait chouette ​ !

Maths Expertes Si Quelquun Pourrait Maider Sil Vous Plaît Ça Serait Chouette class=

Sagot :

Tenurf

Bonjour,

Tout d'abord, pour que z' soit bien défini nous devons avoir z différent de i car

[tex]\overline{z}+i=0<=>\overline{z}=-i<=>z=i[/tex]

Nous pouvons suivre une méthode naive.

Prenons z un complexe quelconque différent de i, nous pouvons l'écrire avec a et b réels, tels que (a,b) soit différent de (0,1),

z=a+ib et alors

[tex]z'=\dfrac{2(a-ib)}{a-ib-i}=\dfrac{2(a-ib)(a+ib+i)}{(a-ib-i)(a+ib+i)}\\\\=\dfrac{2(a^2+iab+ia-iba+b^2+b)}{a^2+(b+1)^2}\\ \\=\dfrac{2(a^2+b^2+b+ia)}{a^2+(b+1)^2}\\ \\[/tex]

z' est un nombre réel si et seulement si sa partie imaginaire est nulle, donc a = 0 et alors z est de la forme bi avec b différent de 1

La bonne réponse est donc a) z est imaginaire pur différent de i.

Merci

Remarque: une approche plus élégante consiste à dire que z' est réel si et seulement si son conjugué est égal à lui même donc, pour z complexe différent de i

[tex]\overline{z'}=z'<=>2z(\overline{z}+i)=2\overline{z}(z-i)\\\\<=>2z\overline{z}+2zi-2z\overline{z}+2\overline{z}i=0\\ \\<=> \overline{z}=-z[/tex]

Ainsi z est un imaginaire pur différent de i