Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

J'aurais besoin d'aide pour cet exercice qui est un DM de maths que je n'arrive pas du tout à faire. Es ce que vous pourriez m'aider s'il vous plaît, merci.

Exercice 2:
Le bénéfice d'une entreprise en milliers d'euros, en fonction de la quantité x de milliers d'objets vendus, est modélisé par B(x)= -2/3x(au cube) + 11/2x² + 6x - 20 pour x appartient [0;10].
Partie A: Conjectures
1. Représenter la fonction B à l'écran d'une calculatrice
2. Conjecturer pour quelles ventes d'objets l'activité de l'entreprise est rentable.

Partie B: Calculs
1.a) Déterminer B'(x)
   b) Etudier le signe de B'(x) puis dresser le tableau de variations de B sur l'intervalle [0;10]
2. Déterminer la quantité d'objets à vendre pour que le bénéfice soit maximal.
3. a) Justifier que l'équation B(x)=0 admet deux solutions alpha et bêta dans l'intervalle [0;10]
    b) Déterminer une valeur approchée à 10(-3) rès de alpha puis de bêta.
4. a) Faire le tableau de signe de B(x)
    b) En déduire, à l'unité près, la quantité minimale et la quantité maximale que l'entreprise doit vendre pour qu'elle soit rentable.  

   


Sagot :

A1) Voir graphe joint.
A2) Le bénéfice est positif pour 1,5≤x≤8,9 (valeur approximatives)

B1a) B'(x)=-3*2/3*x²+2*11/2*x+6=-2x²+11x+6
B1b) On cherche les racines de -2x²+11x+6=0
Δ=11²-4*(-2)*6=121+48=169
√Δ=13
donc les racines sont x1=(-11+13)/(-4)=-1/2 ∉ [0;10]
et x2=(-11-13)/(-2)=24/4=6
Donc B'(x)=(x+1/2)(x-6)
Le signe de B' dépend de x-6 car x+1/2≥0 sur [0;10]
Soit les variations suivantes :
x              0                          6                                10
B'(x)                        +           0               -
B(x)                croissant                   décroissant

B2) Le bénéfice est maximal quand B'(x)=0 soit quand x=6 soit 6.000 objets

B3a) B(0)=-20
B(6)=70
B(10)=-2/3*1000+11/2*100+600-20≈-76,7
D'après les variations de B on en déduit que B(x)=0 admet 2 solutions sur [0,10]

B3b) En procédant par dichotomie :
B(1)≈-9,2<0
B(2)≈8,7>0
Donc on calcule B(1,5)≈-0,875<0 donc la solution est dans [1,5:2] car B est croissante sur [1;2]
B(1,75)≈3,771>0 donc la solution est dans [1,5;1,75]
B(1,625)≈1,413>0 donc la solution est dans [1,5;1,625]
B(1,563)≈0,269>0 donc la solution est das  [1,5;1,563]
B(1,532)≈-0,296<0 donc la solution est dans [1,532;1,563]
B(1,547)≈-0,024<0 donc la solution est dans [1,547;1,563]
B(1,555)≈0,122>0 donc la solution est dans [1,547;1,555]
B(1,551)≈0,049>0 donc la solution est dans [1,547;1,551]
B(1,549)≈0,013> donc la solution est dans [1,547;1,549]
B(1,548)≈-0,005 : α=1,548 solution approchée à 0,001 près

On fait pareil pour la deuxième solution sur [8;9] en faisant attention que B est décroissante sur cet intervalle et on trouve β=8,883

B4a)
x              0                          α                          β                            10
B(x)                          -                            +                          -

B4b) On en déduit que pour être rentable l'entreprise doit au minimum produire 1548 objets et au maximum 8883.
View image slyz007
Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.