Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.
Sagot :
Réponse :
Bonjour
1) (√a - √b)² = (√a)² - 2√a√b + (√b)² = a - 2√ab + b
2) (√a - √b)² ≥ 0 ( car un carré est toujours positif)
⇔ a - 2√ab + b ≥ 0
⇔ -2√ab ≥ -a - b
⇔ √ab ≤ (-a - b)/(-2)
⇔ √ab ≤ [tex]\frac{1}{2}(a+b)[/tex]
3) De la même manière ,on obtient :
√ac ≤ [tex]\frac{1}{2}(a+c)\\[/tex]
et √bc ≤ [tex]\frac{1}{2}(b+c)[/tex]
donc √ab + √ac + √bc ≤ [tex]\frac{1}{2}(a+b) + \frac{1}{2}(a+c) + \frac{1}{2}(b+c)\\[/tex]
⇔ √ab + √ac + √bc ≤ [tex]\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}a+\frac{1}{2}c+\frac{1}{2}b+\frac{1}{2}c[/tex]
⇔ √ab + √ac + √bc ≤ a + b + c
4) √6 + √8 + √12 = √(2×3) + √(2×4) + √(3×4)
D'après le 3), avec a = 2 , b = 3 et c = 4
on a √(2×3) + √(2×4) + √(3×4) ≤ 2 + 3 + 4
⇔ √6 + √8 + √12 ≤ 9
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.