Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Notre plateforme vous connecte à des professionnels prêts à fournir des réponses précises à toutes vos questions. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Pouvez vous m’aider pour l’exercice 3 questions 2,3 et 4 s’il vous plaît.

Pouvez Vous Maider Pour Lexercice 3 Questions 23 Et 4 Sil Vous Plaît class=

Sagot :

Réponse :

Bonjour

1) (√a - √b)² = (√a)² - 2√a√b + (√b)² = a - 2√ab + b

2) (√a - √b)² ≥ 0 ( car un carré est toujours positif)

⇔ a - 2√ab + b ≥ 0

⇔ -2√ab ≥ -a - b

⇔ √ab ≤ (-a - b)/(-2)

⇔ √ab ≤ [tex]\frac{1}{2}(a+b)[/tex]

3) De la même manière ,on obtient :

√ac ≤ [tex]\frac{1}{2}(a+c)\\[/tex]

et √bc ≤ [tex]\frac{1}{2}(b+c)[/tex]

donc √ab + √ac + √bc ≤ [tex]\frac{1}{2}(a+b) + \frac{1}{2}(a+c) + \frac{1}{2}(b+c)\\[/tex]

⇔ √ab + √ac + √bc ≤ [tex]\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}a+\frac{1}{2}c+\frac{1}{2}b+\frac{1}{2}c[/tex]

⇔ √ab + √ac + √bc ≤ a + b + c

4) √6 + √8 + √12 = √(2×3) + √(2×4) + √(3×4)

D'après le 3), avec a = 2 , b = 3 et c = 4

on a √(2×3) + √(2×4) + √(3×4) ≤ 2 + 3 + 4

⇔ √6 + √8 + √12 ≤ 9

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.