Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés dans divers domaines sur notre plateforme. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

Aidez moi s'il vous plaît.

Exercice 1:

On considère la fonction f définie sur l'intervalle [1;6] par f(x)= ax + b - 16/x où a et b sont des nombres réels. On admet que f est dérivable sur l'intervalle [1;6] et on note f' la fonction dérivée de f sur cet intervalle. La courbe représentative de f, donnée ci-contre, admet une tangente horizontale au point A de coordonnées (2;4). 1. Déterminer f'(x) 2. Déduire les valeurs de a et b.



Sagot :

f'(x)=x+0+16/x²= (16+x^3)/x²

 

tangente : y=f'(x)(x-a)+f(x)=((16+x^3)/x²)(x-a)+ax+b-16/x

 

après tu dévelope et tu remplace x par 2 et y par 4, si c'est juste

 

Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.