Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Obtenez des réponses détaillées à vos questions de la part d'une communauté dédiée d'experts sur notre plateforme. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.

Bonjour je n’arrive pas à cette exercice

Exercice 4:
Soit la fonction définie sur IR par f(x)=3x2-2:
1. Calculer son taux de variation entre 3 et 6.
2. Montrer que le taux de variation de la fonction fentre 1 et 1+h est égale à :
3h+3
3. En déduire que la fonction fest dérivable en 1 et donner f'(1).

Sagot :

Réponse :

Bonjour

Explications étape par étape

1)

f(x)=3x²-2

Taux "T" de variation entre 3 et 6 :

T=[f(6)-f(3)] /(6-3)=(106-25)/3=27

2)

f(1+h)=3(1+h)²-2=3(1+2h+h²)-2=3h²+6h+1

f(1)=3-2=1

T=[f(1+h)-f(1)] / (1+h-1)

T=(3h²+6h+1-1) / h

T=(3h²+6h) / h ==>on met "h" en facteur au numérateur

T=h(3h+6) / h ==>On simplifie par "h" qui est ≠ 0

T=3h+6

Et non : 3h+3 comme tu as écrit.

3)

La dérivée au point d'abscisse x=1 est la limite de T=3h+6 quand h tend vers zéro.

Cette limite en x=1 existe et vaut  : 3*0+6=6.

Donc f(x) est dérivable en 1.

Et f '(1)=6

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.