Sagot :
que la courbe est symetrique par rapport à O (fonction impaire)
quand x->+inf 1/x2 tend vers 0 donc g se comporte comme x et tend vers +inf
quand x tend vers 0 1/x^2 tend vers +inf et a racine se comporte comme 1/x ainsi g tend vers 1
x croit et rac(1+1/x^2) aussi donc g croit sur R+
la limite de (g(x)-1)/x : comme 1/x tend vers +inf on va "sortir" 1/x de sous la racine :
g(x)=x*(1/x)*sqrt(x^2+1) donc g(x)-1=sqrt(x^2+1)-1 et x^2 tend vers 0 donc g(x)-1 equivaut à 1+x^2/2-1 et (g(x)-1)/x est equivalent à x/2 tend vers 0 : tangente horizontale
le graphe de f s'obtient par symetrie
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.