Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Obtenez des réponses détaillées à vos questions de la part d'une communauté dédiée d'experts sur notre plateforme. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Bonjour, je n'y comprend vraiment rien en mathématique et j'ai un devoir à faire pour demain ( comme toujours fait à la drnière minute ) donc si quelqu'un pourrait m'orienter pour les réponses ou quoi que ce soit ce serait sympa ! 

 

Soit la fontion f définie sur R+ par f(x)=x[tex]\sqrt{1+\frac{1}{x^{2}}} [/tex]

de courbe représentative Cf

1.Démontrer que pour tout réel x≠0

f(-x)=-f(x)

que peut-on en déduire pour la courbe Cf ? 

On appelle g la restrction de f à l'intervalle]0;+∞[ et Cg sa coubre représentative.

2. Déterminer les limites de g en 0 et en +

3. démontrer que la fonction g est croisante sur l'intervalle ]0;+∞[

4.Déterminer [tex]\lim_{x \to 0} \frac{g(x)-1}{x}[/tex]

que peut-on en déduire pour la courbe Cg au voisinage du point A(0;1)?

5.Construire Cg et Cf dans le même repère.


Merci à la personne qui voudra bien m'aider



Sagot :

que la courbe est symetrique par rapport à O (fonction impaire)

quand x->+inf 1/x2 tend vers 0 donc g se comporte comme x et tend vers +inf

quand x tend vers 0 1/x^2 tend vers +inf et a racine se comporte comme 1/x ainsi g tend vers 1

 

x croit et rac(1+1/x^2) aussi donc g croit sur R+

 

la limite de (g(x)-1)/x : comme 1/x tend vers +inf on va "sortir" 1/x de sous la racine :

 

g(x)=x*(1/x)*sqrt(x^2+1) donc g(x)-1=sqrt(x^2+1)-1 et x^2 tend vers 0 donc g(x)-1 equivaut à 1+x^2/2-1 et (g(x)-1)/x est equivalent à x/2 tend vers 0 : tangente horizontale

 

le graphe de f  s'obtient par symetrie

 

Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.