Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

On considère le triangle ABC ci- contre. Démontrer que ce triangle est rectangle quel que soit le nombre n supérieur ou égal a 1 AB=n cm BC=(npuissance2 - 1) barre transversale 2 CA= (npuissance2 + 1) barre transversale 2



On Considère Le Triangle ABC Ci Contre Démontrer Que Ce Triangle Est Rectangle Quel Que Soit Le Nombre N Supérieur Ou Égal A 1 ABn Cm BCnpuissance2 1 Barre Tran class=

Sagot :

AB c'est n AC c'est (n^2+1)/2 et BC c'est (n^2-1)/2

donc AC^2 vaut (n^4+2n^2+1)/4

et BC^2 vaut (n^4-2n^2+1)/4

et le plus grand coté est bien entendu AC

Or AC^2=BC^2+4n^2/4=BC^2+n^2==BC^2+AB^2 CQFD

 

Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.