Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.

Bonjour g pas du tout compris les deux derniers exercices si quelqun peut m aider svp
Même pour une réponse à une question svp mercii bcp ! ​

Bonjour G Pas Du Tout Compris Les Deux Derniers Exercices Si Quelqun Peut M Aider Svp Même Pour Une Réponse À Une Question Svp Mercii Bcp class=

Sagot :

Bonjour,

EXERCICE 2

h(x) est de la forme

[tex] \frac{u}{v} [/tex]

Avec u = -3x²+4x+1

et u' = -6x + 4

v = x⁴+x²+1

v' = 4x³ + 2x

La dérivée h'(x) est de la forme

[tex] \frac{u \: prime \: \times \: v \: - \: u \: \times \: v \: prime}{v {}^{2} } [/tex]

Donc h'(x) =

[tex] \frac{( - 6x + 4) ({x}^{4} + x {}^{2} + 1 ) - ( - 3x {}^{2} + 4x + 1 )( 4 {x}^{3} + 2x) } {( {x}^{4} - {x}^{2} + 1 ) {}^{2} } [/tex]

Pour gagner du temps je ne marque pas le v² en dessous mais à chaque fois il faut le mettre. Pas la peine de le développer car au contraire un carré est toujours positif et ça peut être très utile de le laisser comme ça.

= (-6x × x⁴ -6x × x² -6x × 1 + 4 × x⁴ + 4 × x² + 4 × 1) - (-3x² × 4x³ -3x² × 2x + 4x × 4x³ + 4x × 2x + 1 × 4x³ + 1 × 2x)

= (-6x⁵ - 6x³ - 6x + 4x⁴ + 4x² + 4) - (-12x⁵ - 6x³ + 16x⁴ + 8x² + 4x³ + 2x)

= -6x⁵ + 4x⁴ - 6x³ + 4x² - 6x + 4 + 12x⁵ + 6x³ - 16x⁴ - 8x² - 4x³ - 2x

= 6x⁵ - 12x⁴ - 4x³ - 4x² - 8x + 4 (le tout divisé par v²)

Voilà la forme dérivée!

EXERCICE 3

1) f'(x) = 2ax + b

Bonne journée.

Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.