Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.
Sagot :
Bonjour,
Montrons par récurrence la propriété:
P(n): " Pour tout entier n > 0, 17 | 3 x [tex]5^{2n-1}[/tex] + [tex]2^{3n - 2}[/tex] "
*Pour n = 1, 3 x [tex]5^{2-1}[/tex] + [tex]2^{3 - 2}[/tex] = 15 + 2 = 17 et 17 | 17 donc P(1) est vraie.
*Supposons P(n) vraie et montrons que P(n+1) est vraie:
3 x [tex]5^{2(n+1)-1}[/tex] + [tex]2^{3(n+1) - 2}[/tex] = 3 x [tex]5^{2n+1}[/tex] + [tex]2^{3n + 1}[/tex]
= 3 x 5² x [tex]5^{2n-1}[/tex] + [tex]2^3[/tex] x [tex]2^{3n - 2}[/tex]
= 75 x [tex]5^{2n-1}[/tex] + 8 x [tex]2^{3n - 2}[/tex]
= (8 x 3 + 51) x [tex]5^{2n-1}[/tex] + 8 x [tex]2^{3n - 2}[/tex]
= 8 x 3 x [tex]5^{2n-1}[/tex] + 8 x [tex]2^{3n - 2}[/tex] + 51 x [tex]5^{2n-1}[/tex]
= 8(3 x [tex]5^{2n-1}[/tex] + [tex]2^{3n - 2}[/tex]) + 17 x 3 x [tex]5^{2n-1}[/tex] #On a fait apparaître l'hypothèse de récurrence !
Par hypothèse de récurrence,
17 | 8(3 x [tex]5^{2n-1}[/tex] + [tex]2^{3n - 2}[/tex])
Et 17 | 17 x 3 x [tex]5^{2n-1}[/tex]
Donc 17 | 8(3 x [tex]5^{2n-1}[/tex] + [tex]2^{3n - 2}[/tex]) + 17 x 3 x [tex]5^{2n-1}[/tex]
Ainsi, P(n+1) est vrai.
*Par récurrence, la propriété P(n) est vraie pour tout entier n > 0.
Bonne journée,
Thomas
Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.