Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

Bonsoir ! J’ai besoin d’aide pour cet exercice ! Merci bcp

Bonsoir Jai Besoin Daide Pour Cet Exercice Merci Bcp class=

Sagot :

☺ Salut ☺

[tex]\\[/tex]

[tex]\rule{6cm}{1mm}[/tex]

Écrivons chaque expression sous la forme d'un seul quotient, puis Factorisons le numérateur :

[tex]A_{(x)} = \dfrac{8}{x} + \dfrac{x}{x + 2}[/tex]

Le dénominateur commun est [tex]{x}^{2} + 2x[/tex] :

[tex]A_{(x)} = \dfrac{8x + 16 + {x}^{2}}{{x}^{2} + 2x}[/tex]

Ordonnons le numérateur :

[tex]A_{(x)} = \dfrac{{x}^{2} + 8x + 16}{{x}^{2} + 2x}[/tex]

On a :

[tex]A_{(x)} = \dfrac{{x}^{2} + 2\times x \times 4 + {4}^{2}}{{x}^{2} + 2x}[/tex]

Alors :

[tex]\boxed{\boxed{\blue{A_{(x)} = \dfrac{(x + 4)(x + 4)}{{x}^{2} + 2x}}}}[/tex]

Ou

[tex]\boxed{\boxed{\green{A_{(x)} = \dfrac{ {(x +4)}^{2}}{{x}^{2} + 2x}}}}[/tex]

[tex]\\[/tex]

[tex]B_{(x)} = 1 - \dfrac{4}{{(x + 1)}^{2}}[/tex]

[tex]B_{(x)} = \dfrac{{(x + 1)}^{2} - 4}{{(x + 1)}^{2}}[/tex]

On a :

[tex]B_{(x)} = \dfrac{{(x + 1)}^{2} - {2}^{2}}{{(x + 1)}^{2}}[/tex]

Alors :

[tex]B_{(x)} = \dfrac{(x + 1 - 2)(x + 1 + 2)}{{(x + 1)}^{2}}[/tex]

[tex]\boxed{\boxed{\green{B_{(x)} = \dfrac{(x - 1)(x + 3)}{{(x + 1)}^{2}}}}}[/tex]

[tex]\rule{6cm}{1mm}[/tex]

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.