Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises à toutes vos interrogations de la part de professionnels de différents domaines. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Bonjour, je n’arrive pas à résoudre cette exercice. Est-ce que quelqu’un pourrait m’aider svp !

Bonjour Je Narrive Pas À Résoudre Cette Exercice Estce Que Quelquun Pourrait Maider Svp class=

Sagot :

Réponse :

Re bonjour

Explications étape par étape

Comme déjà dit :

Partie C :

1)

f(x)=(3/4)x+1+(x+1)/x²

Quand x tend vers zéro :

lim (x+1)=1

lim (x+1)/x² = lim 1/0²= +inf

lim f(x)=0+1+inf=+inf

Quand x tend  vers  -inf :

lim (x+1)/x²=lim x/x² = lim 1/x= 0

lim f(x)= -inf+1+0= -inf

Quand x tend  vers  +inf :

lim (x+1)/x²=lim x/x² = lim 1/x= 0

lim f(x)= +inf+1+0= +inf

2)

On va chercher la dérivée de (x+1)/x² d'abord.

De la forme u/v avec :

u=x+1 donc u'=1

v=x² donc v '=2x

Dérivée de (x+1)/x² :

(u'v-uv')/v²=(x²-2x(x+1)) / x^4=(-x²-2x)/x^4=(-x-2)/x^3

Donc :

f '(x)= (3/4) + (-x-2)/x^3

f '(x)=(3/4)-(x+2)/x^3

f '(x)=[3(x^3-4(x+2)] / 4x^3

f '(x)=(3x^3-4x-8)/4x^3

f '(x)=h(x) / 4x^3

3)

Tu vas avoir compte tenu de la partie A avec α ≈ 1.70 :

x------------>-inf............................0.....................α....................+inf

4x^3----------->.............-..................0........+.....................+.......

h(x)----------->.............-.............................-.............0........+...........

f '(x)---------->................+................||.........-...............0.......+..........

f(x)----------->.................C................||.........D............f(α).......C........

C=flèche qui monte

D=flèche qui descend

Tu calcules une valeur approchée de  f(α) ≈ 3.2

4)

a)

f(x)-[(3/4)x+1]=(x+1)/x²

Quand x tend vers -inf ou +inf :

lim (x+1)/x²=lim x/x²=lim 1/x=0

Donc :

Quand  x tend vers - inf ou +inf  :

lim f(x)-[(3/4)x+1}=0

Ce qui prouve que le droite D d'équation y=(3/4)x+1 est asymptote à Cf en l'infini.

b)

On résout :

(3/4)x+(x+1)/x²=(3/4)x+1

qui donne :

(x+1)/x²=0

soit :

x+1=0

x=-1

f(1)=-3/4+1=1/4

Point d'intersection : (-1;1/4)

c)

On a vu que :

f(x)-[(3/4)x+1]=(x+1)/x²

x+1 >  0  ===>x >  -1

Sur [-1;0[ U ]0;+inf :

(x+1)/x² > 0

Donc :

f(x)-[(3/4)x+1] > 0

Donc :

f(x)  > [(3/4)x+1]

Qui prouve que Cf au-dessus de D.

Sur ]-inf;-1] :

(x+1)/x² < 0

Donc :

f(x)-[(3/4)x+1] < 0

Donc :

f(x)  < [(3/4)x+1]

Qui prouve que Cf au-dessous de D.

5)

y=f '(1)(x-1)+f(1)

f '(x)=(3x^3-4x-8)/4x^3

f '(1)=-9/4

f(1)=15/4

y=-(9/4)(x-1)+15/4

y=-(9/4)x+9/4+15/4

y=-(9/4)x+6

Partie  B :

g(x)=ax+b + (x+1)/x²

g(1)=15/4 donne :

a+b + 2=15/4

b=15/4-2-a

b=7/4-a

J'ai fait la dérivée de (x+1)/x² dans la partie C.

g '(x)=a - (x+2)/x^3

qui donne :

g '(1)=a -3

Mais g '(1)=-9/4

Donc :

a-3=-9/4

a=3-9/4

a=3/4

b=7/4-3/4=4/4=1

Donc :

g(x)=(3/4)x+1+(x+1)/x²

Voir  graph joint.

Tu peux remettre ton DM dans un nouveau post en précisant que tu ne veux de réponse que pour la partie A. Si tu as besoin !!

View image Bernie76
Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.