Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.
Sagot :
Réponse :
Explications étape par étape
1. OK pour tes valeurs interdites, mais pourquoi cherches tu à résoudre A(x) = 0 ce n'est pas demandé.
Pour la question 2
Le plus simple est de partir de l'expression de droite, réduire au même dénominateur et obtenir le terme de gauche
[tex]2+\frac{3}{x}=\frac{2x}{x} +\frac{3}{x} = \frac{2x+3}{x}=A(x)[/tex]
[tex]2-\frac{3}{x-6}= \frac{2(x-6)}{x-6}-\frac{3}{x-6}\\\\=\frac{2x-12-3}{x-6}\\\\=\frac{2x-15}{x-6} \\\\= B(x)[/tex]
3. La question 3 venant après la question 2, il faut utiliser le résultat de la question 2
[tex]A(3+t)=2+\frac{3}{3+t}[/tex]
[tex]B(3-t)=2-\frac{3}{3-t-6}\\\\= 2-\frac{3}{-t-3}\\\\=2-\frac{3}{-(t+3)}\\\\=2+\frac{3}{t+3}\\\\=A(3+t)[/tex]
Bonjour,
1. Il suffit de s'assurer que nous ne divisons pas par 0.
Donc pour A, x doit être différent de 0
Pour B, x doit être différent de 6
2.
Prenons x différent de 0
[tex]A(X)=\dfrac{2x+3}{x}=\dfrac{2x}{x}+\dfrac{3}{x}=\boxed{2+\dfrac{3}{x}} \\[/tex]
Prenons x différent de 6
[tex]B(X)=\dfrac{2x-15}{x-6}=\dfrac{2x-12-3}{x-6}\\\\=\dfrac{2(x-6)}{x-6}-\dfrac{3}{x-6}\\\\=\boxed{2-\dfrac{3}{x-6}} \\[/tex]
3.
pour t est différent de 3 et -3 donc t+3 est différent de 6 et 3-t différent de 0
donc A(3-t) et B(t+3) sont bien définis.
[tex]A(3-t)=2+\dfrac{3}{3-t}=2-\dfrac{3}{t-3} \\\\B(t+3)=2-\dfrac{3}{t+3-6}=2-\dfrac{3}{t-3} \\\\\Large \boxed{\sf \bf A(3-t)=B(t+3)}[/tex]
Mais ce n'est pas la question demandée. désolé, j'avais lu trop vite.
[tex]A(t+3)=2+\dfrac{3}{t+3} \\\\B(3-t)=2-\dfrac{3}{3-t-6}=2+\dfrac{3}{t+3} \\\\\Large \boxed{\sf \bf A(t+3)=B(3-t)}[/tex]
merci
Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.