Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

bonjour pouvez vous m'aider svp (mrc)
montrer que:​


Bonjour Pouvez Vous Maider Svp Mrcmontrer Que class=

Sagot :

Tenurf

Bonjour,

[tex]\forall x \in \mathbb{R}; x > 1\\ \\(x-2)^2\geq 0 \\ \\<=> x^2-4x+4\geq 0 \\ \\<=> x^2\geq 4(x-1) \\\\*** *** \text{ Comme } x-1 > 0 \\ \\<=> \dfrac{x^2}{x-1}\geq 4[/tex]

Et comme c'est vrai quelque soit x > 1 on peut faire de même avec y > 1 et au final

[tex]x > 1; \ y>1\\ \\\dfrac{x^2}{x-1} + \dfrac{y^2}{y-1}\geq 4+4=8\\ \\\Large \boxed{\sf \bf \dfrac{x^2}{x-1} + \dfrac{y^2}{y-1}\geq 8}[/tex]

Merci

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.