Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.
Sagot :
Bonjour,
Nous pouvons écrire f(x) de la forme
[tex]f(x)=ax^2+bx+c[/tex]
avec a, b et c réels
f(1)=a+b+c=18
f(-1)=a-b+c=2
[tex]\Delta=b^2-4ac=160[/tex]
L'équation 1 moins l 'équation 2 donne
b + b = 18 - 2 = 16 <=> 2b = 16 <=> b = 8
et a+c = 10 <=> a = 10 - c
Donc la dernière équation devient
[tex]8^2-4(10-c)c=160 \\ \\<=> 64-40c+4c^2=160 \\\\<=> 4c^2-40c-96=4(c+2)(c-12)=0[/tex]
- Soit c = -2 et alors a = 12 et b =8
et dans ce cas le sommet de la parabole est
[tex]f(-b/(2a))=f(-8/24)=f(-1/3)=12 \times {1/3}^2-8\times 1/3 -2\\\\=\dfrac{12-24-18}{9}\\\\=\dfrac{-30}{9}[/tex]
Mais ce n'est pas un entier
- Soit c = 12 et alors a=-2 et b = 8
et dans ce cas le sommet de la parabole est
[tex]f(-b/(2a))=f(8/4)=f(2)=-2 \times 2^2+8\times 2 +12=-8+16+12=20[/tex]
Comme 20 est un nombre entier, c'est le coefficient demandé.
Merci
Réponse :
Explications étape par étape
Bonjour
Un trinôme qui correspond à une parabole est un trinôme du second degré donc s’écrivant :
f(x) = ax^2 + bx + c
Avec les indications on a :
f(1) = 18
f(-1) = 2
[tex]\Delta = 160[/tex]
f(1) = a * 1^2 + b * 1 + c = 18
a + b + c = 18
f(-1) = a * (-1)^2 + b * (-1) + c = 2
a - b + c = 2
[tex]\Delta = b^2 - 4 * ac = 160[/tex]
Avec les 2 premières équations on peut déterminer le b en les soustrayant :
a + b + c - a + b - c = 18 - 2
2b = 16
b = 16/2
b = 8
f(x) = ax^2 + 8x + c
Donc : à + c = 10
a = 10 - c
[tex]\Delta = 8^2 - 4 * ac = 160[/tex]
64 - 4ac = 160
4ac = 64 - 160
ac = -96/4
ac = -24
On remplace à :
(10 - c)c = -24
10c - c^2 = -24
c^2 - 10c - 24 = 0
[tex]\Delta = (-10)^{2} - 4 * 1 * (-24) = 100 + 96 = 196[/tex]
[tex]\sqrt{\Delta} = 14[/tex]
C1 = (10 - 14)/2 = -4/2 = -2
C2 = (10 + 14)/2 = 24/2 = 12
Donc à1 = 10 - C1 = 10 - (-2) = 12
a2 = 10 - C2 = 10 - 12 = (-2)
f(x) = 12x^2 + 8x - 2
Ou
f(x) = -2x^2 + 8x + 12
Pour déterminer le sommet de la parabole :
S [x = -b/2a ; y = f(-b/2a)]
1ère equation :
x = -8/(2 * 12) = -8/24 = -1/3
y = f(-1/3) = 12 * (-1/3)^2 + 8 * (-1/3) - 2
y = 12 * 1/9 - 8/3 - 2
y = 12/9 - 8/3 - 6/3
y = 4/3 - 14/3
y = -10/3 => pas un entier donc non
2eme équation :
x = -8/(2 * (-2)) = -8/(-4) = 2
y = f(2) = -2 * 2^2 + 8 * 2 + 12
y = -2 * 4 + 16 + 12
y = -8 + 28
y = 20
S (2 ; 20)
La parabole a pour équation :
f(x) -2x^2 + 8x + 12
Et le codage est l’ordonnée sur sommet soit : 20
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.