Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.
Sagot :
Réponse :
ex4
1) Montrer que (ED) est la tangente au cercle C en D
Dans le triangle ADE la somme des angles est égale à 180°
^ADE + ^AED + ^DAE = 180° ⇔ ^AED = 180° - (^AED + ^DAE)
⇔ ^ADE = 180° - (25°+65°) = 180° - 90° = 90°
donc ^ADE = 90°
la droite (ED) est tangente au cercle (C) en D, car (ED) est perpendiculaire en D à (AD)
2) calculer l'aire du triangle ADE
tout d'abord, il faut calculer la longueur ED
tan 65° = ED/AD ⇔ ED = AD x tan 65° ⇔ ED = 3 x 2.1445 ≈ 6.4 cm
l'aire A(aed) = 1/2)(3 x 6.4) ≈ 9.6 cm²
3) le centre du cercle circonscrit au triangle ADE appartient -il au cercle (C)
le centre du cercle circonscrit au triangle ADE est le milieu de l'hypoténuse (EA)
tout d'abord, il faut calculer la longueur (EA) du triangle rectangle ADE
d'après le th.Pythagore on a, EA² = AD²+ED² = 3²+6.4² = 9+40.96 = 49.96
donc EA = √(49.96) ≈ 7.1 cm donc le milieu de l'hypoténuse (EA) est 7.1/2 = 3.55 cm
or 3.55 cm > 3 cm (rayon du cercle C) donc le centre du cercle circonscrit au triangle ADE n'appartient pas au cercle (C)
Explications étape par étape
Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.