Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Notre plateforme de questions-réponses vous connecte avec des experts prêts à fournir des informations précises dans divers domaines de connaissance. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.
Sagot :
Bonjour
[tex](a+b+c)^3=(a+b+c)^2(a+b+c)=((a+b)^2+c^2+2(a+b)c)(a+b+c)\\\\=(a^2+b^2+2ab+c^2+2ac+2bc)(a+b+c)\\\\=(a^2+b^2+c^2+2(ab+ac+bc))(a+b+c)\\\\=a^3+b^3+c^3+a^2(b+c)+b^2(a+c)+c^2(a+b)+2(ab+bc+ac)(a+b+c)\\\\=a^3+b^3+c^3+3a^2(b+c)+3b^2(a+c)+3c^2(a+b)+6abc\\ \\[/tex]
Et donc
[tex]0=a^3+b^3+c^3-3abc=(a+b+c)^3-[3a^2(b+c)+3b^2(a+c)+3c^2(a+b)+9abc]\\\\=(a+b+c)^2-[3a^2(b+c)+3b^2(a+c)+3c^2(a+b)+3abc+3abc+3abc]\\ \\=(a+b+c)^2-[3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)]\\ \\=(a+b+c)(a^2+b^2+c^2+2ab+2bc+2ac-3ab-3bc-3ac)\\ \\=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\\ \\=(a+b+c)\dfrac{(a-b)^2+(b-c)^2+(c-a)^2}{2}[/tex]
Comme a+b+c est différent de 0 cela veut dire que la somme des trois carrés doit être 0 et cela arrive pour (a-b)=0 et (b-c)=0 et (c-a)=0 donc a = b, b = c et c = a
Le triangle est donc équilatéral.
Merci
Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.