Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.

Bonjours pouvez-vous m’aider avec mon Dm.
C’est du niveau 2nd.
Ex 2: question b et c svp.
Merci d’avance

Bonjours Pouvezvous Maider Avec Mon Dm Cest Du Niveau 2nd Ex 2 Question B Et C Svp Merci Davance class=

Sagot :

Réponse :

Bsr,

b.

On peut imaginer (conjecturer) que selon le modèle de calcul, on va chaque fois obtenir le carré d'un entier car cela s'est produit dans les trois essais.

c.

Le début de l'expression est le produit suivant :

n (n + 1) (n + 2) (n + 3)

J'observe ceci :

n (n + 3) = n² + 3 n  

Et j'observe aussi :

(n + 1) (n + 2) = n² + 3 n + 2

n (n + 1) (n + 2) (n + 3) = n (n + 3) x (n + 1) (n + 2)

n (n + 1) (n + 2) (n + 3) = (n² + 3 n) x (n² + 3 n + 2)

n (n + 1) (n + 2) (n + 3) = (n² + 3 n + 1 - 1) x (n² + 3 n + 1 + 1)

n (n + 1) (n + 2) (n + 3) = [(n² + 3 n + 1) - 1] x [(n² + 3 n + 1) + 1]

On remarque la forme d'une identité remarquable : (a - b) (a + b) = a² - b²

a = (n² + 3 n + 1)

b = 1

n (n + 1) (n + 2) (n + 3) = (n² + 3 n + 1)² - 1²

n (n + 1) (n + 2) (n + 3) = (n² + 3 n + 1)² - 1

De cette dernière égalité, on peut écrire :

n (n + 1) (n + 2) (n + 3) + 1 = (n² + 3 n + 1)²

J'ai choisi d'aborder cette démonstration SANS passer par le développement du début d'exercice.

L'utiliser facilite sans doute la démarche.

Dans ce cas, développer n (n + 1) (n + 2) (n + 3), ensuite ajouter 1 et comparer avec A dans sa forme développée.