Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

Bonjour, j’aurais besoin d’aide pour résoudre les deux 1er équations. Je suis en terminale.
Je vous met les équations en pièce jointe.
MerciII

Bonjour Jaurais Besoin Daide Pour Résoudre Les Deux 1er Équations Je Suis En Terminale Je Vous Met Les Équations En Pièce Jointe MerciII class=

Sagot :

Explications étape par étape:

Bonjour, en premier lieu, il te faut définir le domaine de définition de ton équation, avant d'exhiber les solutions.

(E1) est définie si et seulement si x+2 > 0, 5-2x > 0 et x+3 > 0. (les 3 conditions devant être réunies)

x+2 > 0 équivaut à x > - 2, 5-2x > 0 équivaut à x < 5/2 et x+3 > 0 équivaut à x > - 3. Par conséquent, l'ensemble de définition sera D = ]-2 ; 5/2 [.

En passant par l'exponentielle, on déduit que (x+2) / (5-2x) = x+3, qui équivaut à x+2 = (5-2x)(x+3) = -2x^2 - x + 15, d'où 2x^2 + 2x - 13 = 0.

Le discriminant vaut 4 + (13x2x4) = 56.

2 solutions, x1 = (-2 - rac(56)) / 4 = (-1 - rac(14)) / 2 ou x2 = (-2 + rac(56))/4 = (-1 + rac(14)) / 2.

La 1re ne convient pas, donc une seule solution, S = {x2}.

2) Même raisonnement, (E2) définie si et seulement si x^2 - 1 > 0 et 4x-1 > 0 d'où x < - 1 ou x > 1 et x > 1/4. Il en résulte donc que le domaine de définition est D = ] 1; + infini[.

Sur cet intervalle, par la forme exponentielle, on obtient x^2 - 1 <= (4x-1) / 4 par croissance de la fonction exponentielle. Donc 4x^2 - 4 <= 4x-1, d'où 4x^2 - 4x - 3 <= 0.

Le discriminant vaut 16 + 48 = 64.

Ainsi, un intervalle solution, [-1/2; 3/2].

Conclusion, l'ensemble des solutions est S = ] 1 ; 3/2]