Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Expérimentez la commodité d'obtenir des réponses fiables à vos questions grâce à un vaste réseau d'experts. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

Bonjour, pouvez vous m’aidez pour les exercices 2 et 3 svp.



Merci.


Bonjour Pouvez Vous Maidez Pour Les Exercices 2 Et 3 Svp Merci class=

Sagot :

Tenurf

Bonjour,

Exo 2

[tex]\forall t \in \mathbb{R} \\ \\|f(t)|=\dfrac{|2+cost|}{t^2+1}\leq \dfrac{2+|cost|}{t^2+1}\leq \dfrac{3}{t^2+1}[/tex]

et

[tex]\displaystyle \lim_{x\rightarrow +\infty} \dfrac{3}{t^2+1} = 0\\\\\lim_{x\rightarrow -\infty} \dfrac{3}{t^2+1} = 0[/tex]

Donc les limites de f en [tex]+\infty \ et \ -\infty[/tex] existent et

[tex]\displaystyle \lim_{x\rightarrow +\infty} f(x)=0 \\\\ \lim_{x\rightarrow +\infty} f(x)=0[/tex]

Exo 3

[tex]\displaystyle \lim_{t \rightarrow -\infty} -3t+1=+\infty\\\\ \lim_{t \rightarrow -\infty} e^{-3t+1} =+\infty \\ \\ \\ \lim_{t \rightarrow +\infty} -3t+1=-\infty\\\\ \lim_{t \rightarrow +\infty} e^{-3t+1} =0[/tex]

g est décroissante

[tex]\begin{array}{c|c|} t&-\infty \ \ \ +\infty \\---&---\\ g'(t) &+\\---&---\\ g(t) &+\infty \ \searrow \ _0\\ ---&--- \end{array}\right|[/tex]

merci

Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.