Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Aider moi svp
montrons que x²+y²+z²<=1 implique |xyz|<=1​


Sagot :

Salut !

∀ a ∈ [-∞; +∞], a² ≥ 0

Par conséquent,  x² ≥ 0, y² ≥ 0 et z² ≥ 0.

x²+y²+z² ≤ 1

Comme x², y² et z² sont positifs, alors  x² ≤ 1, y² ≤ 1 et z² ≤ 1.

0 ≤ x² ≤ 1, donc -1 ≤ x ≤ 1, |x| ≤ 1 et de même pour y et z.

Le produit de termes inclus entre -1 et 1 sera toujours compris entre -1 et 1.

Donc -1 ≤ xyz ≤ 1, c'est-à-dire |xyz| ≤ 1

Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.