Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Explorez notre plateforme de questions-réponses pour trouver des solutions fiables grâce à une large gamme d'experts dans divers domaines. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

J’aurais besoin d’aide pour la question 2 surtout svp

Jaurais Besoin Daide Pour La Question 2 Surtout Svp class=

Sagot :

Réponse :

Explications étape par étape

View image olivierronat
Tenurf

Bonjour,

1. Remplaçons x par [tex]\sqrt{2}[/tex]

[tex]\sqrt{2}^2-(\sqrt{2}+\sqrt{3})\sqrt{2}+\sqrt{6}\\\\=2-2-\sqrt{3}\sqrt{2}+\sqrt{6}\\\\=-\sqrt{2\times3}+\sqrt{6}=0[/tex]

Donc [tex]\sqrt{2}[/tex] est bien solution de l'équation.

Faisons de même avec [tex]\sqrt{3}[/tex]

[tex]\sqrt{3}^2-(\sqrt{2}+\sqrt{3})\sqrt{3}+\sqrt{6}\\\\=3-\sqrt{2}\sqrt{3}-3+\sqrt{6}\\\\=-\sqrt{2\times3}+\sqrt{6}=0[/tex]

Donc  [tex]\sqrt{3}[/tex] est aussi solution de l'équation.

On aurait pu aussi le voir comme la somme des racines est [tex]\sqrt{2}[/tex]+[tex]\sqrt{3}[/tex] et le produit [tex]\sqrt{2\times3}[/tex]

2.

Du coup, nous pouvons écrire cette équation

[tex]x^2-(\sqrt{2}+\sqrt{3})x+\sqrt{6}=(x-\sqrt{2})(x-\sqrt{3})[/tex]

Mais nous pouvons aussi utiliser le discriminant

[tex]\Delta=(\sqrt{2}+\sqrt{3})^2-4\sqrt{6}=2+3+2\sqrt{6}-4\sqrt{6}=5-2\sqrt{6}\\\\x_1=\dfrac{\sqrt{2}+\sqrt{3}}{2}+\dfrac{\sqrt{\Delta}}{2}=\sqrt{3}\\ \\x_2=\dfrac{\sqrt{2}+\sqrt{3}}{2}-\dfrac{\sqrt{\Delta}}{2}=\sqrt{2}[/tex]

Donc

[tex]\sqrt{\Delta}=\sqrt{5-2\sqrt{6}}=x_1-x_2=\sqrt{3}-\sqrt{2}[/tex]

Merci