Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.

J'ai un exercice de mathémtiques à faire mais je bloque à partir de la deuxième questions
Le nombre de personnes de malades en fonction du temps t, en jour, peut etre modélisé par la fonction f, définie sur l'intervalle [0;30] par: f(t)= -t^3+30t^2. La vitesse de propagation de la maladies au jour t est assimilée au nombre dérivée f'(t)

1°) Etudier le sens de variation de la fonction f. 
2°) Déterminer le nombre de solutions sur [0;30] de l'équation f(t)= 2000. Déterminer un encadrement à l'entier près de la solution non entière.
3°) Calculer la vitesse de propagation de la maladie le 10ème jour.



Sagot :

Le nombre de personnes de malades en fonction du temps t, en jour, peut etre modélisé par la fonction f, définie sur l'intervalle [0;30] par: f(t)= -t³+30t².

La vitesse de propagation de la maladies au jour t est assimilée au nombre dérivée f'(t)

 

1°) Etudier le sens de variation de la fonction f. 

f'(t)=-3t²+60t

 

f'(t)=0 donne -3t²+60t=0

            donc t=0 ou t=20

donc :

- f est croissante sur [0;20]

- f est décroissante sur [20;30]


2°) Déterminer le nombre de solutions sur [0;30] de l'équation f(t)= 2000. Déterminer un encadrement à l'entier près de la solution non entière.

f(t)=2000 possède 2 solutions sur [0;30]

α = 10 et β ≈ 27,32


3°) Calculer la vitesse de propagation de la maladie le 10ème jour.

la vitesse de propagation le 10° jour est :

f'(10)=-3 x 10²+60 x 10 = 300

soit 300 personnes malades par jour supplémentaire

Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.