Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.

Svp donnez moi la factorisation d3 x^n-a^n​

Sagot :

Tenurf

Bonjour,

Nous pouvons remarquer que

pour tout a différent de 1

[tex]\displaystyle 1+a+a^2+...+a^{n-1}=\sum_{k=0}^{n-1} \ a^k = \dfrac{a^n-1}{a-1}[/tex]

donc

[tex](a^n-1)=(a-1)(1+a+a^2+...+a^n)[/tex]

Revenons à [tex]x^n-a^n[/tex]

Soit a = 0 et il n'y pas grand chose à faire

Soit x = a et il n'y pas grand chose à faire non plus

Donc nous pouvons supposer que a est différent de 0 et de x

[tex]x^n-a^n=a^n((\dfrac{x}{a})^n -1)=a^n(\dfrac{x}{a}-1)(1+\dfrac{x}{a}+\dfrac{x^2}{a^2} + ... + \dfrac{x^{n-1}}{a^{n-1}})\\\\=(x-a)(a^{n-1}+xa^{n-2}+....+x^{n-2}a+x^{n-1})[/tex]

Merci

Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.