Answered

Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

Ca fait 1h30 que je suis sur cette exercice , quelqu'un peut m'aider svp.

Démontrer par récurrence que, pour tout naturel que 3^2n+1 + 2^n+2 est un multiple de 7.

PS : ( ^ : puissance )​

Sagot :

Réponse :

Montrons par récurrence que la proposition Pn "3^(2n+1) + 2^(n+2) est un multiple de 7" est vraie.

Initialisation :

Pour n=0, 3^(2*0+1) + 2^(0+2) = 3 + 4 = 7

Donc P₀ est vraie.

Hérédité :

Supposons que Pn est vraie pour un certain n fixé quelconque, montrons qu'alors Pₙ₊₁ est vraie, ie Pₙ₊₁ = 3^(2n+3) + 2^(n+3).

Or :

Pₙ₊₁ = 3^(2n+3) + 2^(n+3)

Pₙ₊₁ = 3^(2n+1)*3² + 2^(n+2)*2

Pₙ₊₁ = 9*3^(2n+1) + 2*2^(n+2)

Pₙ₊₁ = [7*3^(2n+1) + 2*3^(2n+1)] + 2*2^(n+2)

Pₙ₊₁ = 7*3^(2n+1) + 2*[3^(2n+1) + 2^(n+2)]

Pₙ₊₁ = 7*3^(2n+1) + 2*[Pₙ]             Par HR

3^(2n+1) et Pn sont un multiple de 7

La proposition est héréditaire.

Conclusion :

D'après le principe de récurrence, 3^(2n+1) + 2^(n+2) est un multiple de 7.

Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.