Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.
Sagot :
Réponse :
Montrons par récurrence que la proposition Pn "3^(2n+1) + 2^(n+2) est un multiple de 7" est vraie.
Initialisation :
Pour n=0, 3^(2*0+1) + 2^(0+2) = 3 + 4 = 7
Donc P₀ est vraie.
Hérédité :
Supposons que Pn est vraie pour un certain n fixé quelconque, montrons qu'alors Pₙ₊₁ est vraie, ie Pₙ₊₁ = 3^(2n+3) + 2^(n+3).
Or :
Pₙ₊₁ = 3^(2n+3) + 2^(n+3)
Pₙ₊₁ = 3^(2n+1)*3² + 2^(n+2)*2
Pₙ₊₁ = 9*3^(2n+1) + 2*2^(n+2)
Pₙ₊₁ = [7*3^(2n+1) + 2*3^(2n+1)] + 2*2^(n+2)
Pₙ₊₁ = 7*3^(2n+1) + 2*[3^(2n+1) + 2^(n+2)]
Pₙ₊₁ = 7*3^(2n+1) + 2*[Pₙ] Par HR
3^(2n+1) et Pn sont un multiple de 7
La proposition est héréditaire.
Conclusion :
D'après le principe de récurrence, 3^(2n+1) + 2^(n+2) est un multiple de 7.
Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.