Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Trouvez des réponses rapides et fiables à vos questions grâce à notre communauté dévouée d'experts. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.
Sagot :
Réponse :
Bonsoir,
Explications étape par étape
[tex]f(x)=\dfrac{1}{x} =x^{-1}\\\\f'(x)=(-1)*x^{-2}=(-1)^1*1!*x^{-2}\\\\f''(x)=(-1)^1*1!*(-2)*x^{-3}=(-1)^2*2!*x^{-3}\\1)\\f^{(3)}(x)=(-1)^{2}*2!*(-3)*x^{-4}=(-1)^3*3!*x^{-4}\\\\f^{(4)}(x)=(-1)^{3}*3!*(-4)*x^{-5}=(-1)^4*4!*x^{-5}\\\\2)\\f^{(k)}(x)=(-1)^k*(k-1)!*x^{-k}\\\\[/tex]
3)
la formule est vraie pour k=1
On la suppose vraie pour k et on démontre qu'elle est vraie pour k+1
[tex]f^{(k)}(x)=(-1)^k*(k-1)!*x^{-k}\ est\ vraie.\\\\f^{(k+1)}(x)=(f^{(k)}(x))'=((-1)^k*(k-1)!*x^{-k})'\\=(-1)^{(k)}*(k-1)!*(-k)*x^{-k-1}\\\\\boxed{f^{(k+1)}(x)=(-1)^{k+1}*k!*x^{-(k+1)}}\\[/tex]
Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.