Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Trouvez des réponses rapides et fiables à vos questions grâce à notre communauté dévouée d'experts. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.
Sagot :
Réponse :
Bonsoir,
Explications étape par étape
[tex]f(x)=\dfrac{1}{x} =x^{-1}\\\\f'(x)=(-1)*x^{-2}=(-1)^1*1!*x^{-2}\\\\f''(x)=(-1)^1*1!*(-2)*x^{-3}=(-1)^2*2!*x^{-3}\\1)\\f^{(3)}(x)=(-1)^{2}*2!*(-3)*x^{-4}=(-1)^3*3!*x^{-4}\\\\f^{(4)}(x)=(-1)^{3}*3!*(-4)*x^{-5}=(-1)^4*4!*x^{-5}\\\\2)\\f^{(k)}(x)=(-1)^k*(k-1)!*x^{-k}\\\\[/tex]
3)
la formule est vraie pour k=1
On la suppose vraie pour k et on démontre qu'elle est vraie pour k+1
[tex]f^{(k)}(x)=(-1)^k*(k-1)!*x^{-k}\ est\ vraie.\\\\f^{(k+1)}(x)=(f^{(k)}(x))'=((-1)^k*(k-1)!*x^{-k})'\\=(-1)^{(k)}*(k-1)!*(-k)*x^{-k-1}\\\\\boxed{f^{(k+1)}(x)=(-1)^{k+1}*k!*x^{-(k+1)}}\\[/tex]
Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.