Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Expérimentez la commodité d'obtenir des réponses fiables à vos questions grâce à un vaste réseau d'experts. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
a), tu peux simplement dire que la hauteur et la médiatrice issues du somment principal sont confondues.
Donc (AA') et (BC) perpendiculaires
De plus, K milieu de [HC] et I milieu de [HA']
Donc (KI) et (A'C) parallèles
Or A' est sur (BC) donc (KI) perpendiculaire à (AA')
b) I est le point de concours des trois hauteurs - (A'H), (KI) et (AI) - du triangle AA'K sachant que, dans un triangle, une hauteur est une perpendiculaire abaissée d'un sommet. Un tel point est appelé orthocentre du triangle.
c) Tu utilises le théorème des milieux (cas particulier du théorème de Thalès) : si A' milieu de [BC] et si K milieu de [HC] alors les droites (A'K) et (BH) sont parallèles.
Or une propriétés des droites nous dit que lorsque deux droites sont parallèles, toute droite perpendiculaire à l'une est perpendiculaire à l'autre. I jouant le rôle d'orthocentre du triangle AA'K, la droite (AI) est une de ses hauteurs : par définition (AI) est perpendiculaire à (A'K) => (AI) est perpendiculaire à (BH).
Je ne l'ai pas fait mais je me débrouille pas mal !
Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.