Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dévouée d'experts sur notre plateforme de questions-réponses. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

Bonjour, pouvez-vous m'aider sur cet exercice de niveau TERMINALE.
Merci d'avance, bonne journée.


Bonjour Pouvezvous Maider Sur Cet Exercice De Niveau TERMINALE Merci Davance Bonne Journée class=

Sagot :

Tenurf

Bonjour,

1.

[tex]z_0=1-i\\ \\z_1=\dfrac{1}{z_0}=\dfrac{1}{1-i}=\dfrac{1+i}{(1-i)(1+i)}=\dfrac{1+i}{1-i^2}=\dfrac{1+i}{2}\\ \\z_2=\dfrac{1}{z_1}=\dfrac{2}{1+i}=\dfrac{2(1-i)}{1-i^2}=1-i=z_0[/tex]

2.

pour n pair

[tex]z_n=1-i[/tex]

pour n impair

[tex]z_n=\dfrac{1+i}{2}[/tex]

3.

Etape 1 - c'est vrai au rang n = 0

Etape 2 - Supposons que cela soit vrai au rang k et montrons que cela reste vrai au rang k+1

Soit k est pair et donc [tex]z_k=1-i[/tex] (par hypothèse de récurrence) et k+1 est impair et

[tex]z_{k+1}=\dfrac{1}{z_k}=\dfrac{1}{z_0}=z_1=\dfrac{1+i}{2}[/tex]

Soit k est impai et donc [tex]z_k=\dfrac{1+i}{2}[/tex] (par hypothèse de récurrence) et k+1 est pair et

[tex]z_{k+1}=\dfrac{1}{z_k}=\dfrac{1}{z_1}=z_0=1-i[/tex]

Etape 3 - conclusion, nous venons de démontrer pour tout n entier que

pour n pair

[tex]z_n=1-i[/tex]

pour n impair

[tex]z_n=\dfrac{1+i}{2}[/tex]

Merci

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.