Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Bonjour, quelqu'un peut m'aider avec mon dm svp ?
Merci d'avance :)

Bonjour Quelquun Peut Maider Avec Mon Dm Svp Merci Davance class=

Sagot :

Tenurf

Bonjour,

1.

pour tout x réel différent de -1 posons

[tex]f(x)=\dfrac{x}{x+1}[/tex]

calculer

[tex]\dfrac{d}{dx}(f(x))[/tex]

revient a estimer la limite suivante (qui existe puisque f est dérivable comme quotient de fonctions qui le sont sur son domaine de définition)

[tex]\displaystyle \lim_{h \rightarrow 0} \ \dfrac{f(x+h)-f(x)}{h}\\\\[/tex]

[tex]\dfrac{f(x+h)-f(x)}{h}=\dfrac{\dfrac{x+h}{x+h+1}-\dfrac{x}{x+1}}{h}\\\\=\dfrac{(x+h)(x+1)-x(x+h+1)}{h(x+1)(x+h+1)}\\\\=\dfrac{x^2+(h+1)x+h-x^2-(h+1)x}{h(x+1)(x+h+1)}\\\\=\dfrac{h}{h(x+1)(x+h+1)}\\\\=\dfrac{1}{(x+1)(x+h+1)}[/tex]

Et quand h tend vers 0 ça tend vers

[tex]\dfrac{1}{(x+1)^2}[/tex]

2.

Prenons x>0 pour que tout ce beau monde existe et remarquons que f est dérivable sur son domaine de définition.

[tex]\forall x > 0\\ \\f'(x)=\dfrac{\dfrac{1}{x}x^2-2xln(x)}{x^4}=\dfrac{x(1-2ln(x))}{x^4}\\ \\=\dfrac{1-2ln(x)}{x^3}[/tex]

et

[tex]f'(e^{\frac{1}{2}})=\dfrac{1-2 \times \dfrac{1}{2}}{e^{3/2}}=0[/tex]

Donc la tangente au point x = exp(1/2) de la courbe représentative de f a une pente nulle.

Ton devoir est trop long, poste d'autres questions pour le reste du devoir.

Merci

Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.