Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.
Sagot :
Réponse :
Un = (3 n - 2)/(n +1) pour tout entier naturel n
démontrer que pour tout entier naturel n, avec a un réel constant qui ne dépend pas de n
Un+1 - Un = a/(n+1)(n+2)
Un+1 = (3(n+1) - 2)/((n +1) + 1) = (3 n + 3 - 2)/(n+2) = (3 n + 1)/(n+2)
Un+1 - Un = (3 n + 1)/(n+2) -(3 n - 2)/(n +1)
= [(3 n + 1)(n+1) - (3 n - 2)(n + 2)]/(n+1)(n+2)
= [(3 n² + 4 n + 1 - (3 n² + 4 n - 4)]/(n+1)(n+2)
= (3 n² + 4 n + 1 - 3 n² - 4 n + 4)/(n+1)(n+2)
= 5/(n+1)(n+2) donc a = 5 est un réel positif
donc Un+1 - Un = a/(n+1)(n+2) pour tout entier naturel n
Explications étape par étape
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.