Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.
Sagot :
Réponse :
Un = (3 n - 2)/(n +1) pour tout entier naturel n
démontrer que pour tout entier naturel n, avec a un réel constant qui ne dépend pas de n
Un+1 - Un = a/(n+1)(n+2)
Un+1 = (3(n+1) - 2)/((n +1) + 1) = (3 n + 3 - 2)/(n+2) = (3 n + 1)/(n+2)
Un+1 - Un = (3 n + 1)/(n+2) -(3 n - 2)/(n +1)
= [(3 n + 1)(n+1) - (3 n - 2)(n + 2)]/(n+1)(n+2)
= [(3 n² + 4 n + 1 - (3 n² + 4 n - 4)]/(n+1)(n+2)
= (3 n² + 4 n + 1 - 3 n² - 4 n + 4)/(n+1)(n+2)
= 5/(n+1)(n+2) donc a = 5 est un réel positif
donc Un+1 - Un = a/(n+1)(n+2) pour tout entier naturel n
Explications étape par étape
Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.