Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Trouvez des solutions rapides et fiables à vos interrogations grâce à une communauté d'experts dévoués. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.

Bonjour, pourriez-vous m'aider svp. J'arrive pas à faire mon exercice de maths. exercice: représenter chacun des intervalles donnés (déja fait), puis les caractériser par la condition /x-a/ < r, où a et r sont des réels à déterminer. a. [1 ; 5] b. [-1 ; 5] c. [-6 ; -2]. (niveau 2nde) Merci d'avance.

Sagot :

Réponse :

Explications étape par étape

Pour résoudre cet exercice on recherche le milieu de chaque intervalle qui donne a ainsi que la moitié de la distance maximale de l'intervalle r

On alors l'inéquation [tex]|x-a|\leq r[/tex]

[1 ; 5]  a pour centre [tex]a=\dfrac{1+5}{2} =3[/tex] et [tex]r =\dfrac{5-1}{2}=2[/tex]

On a donc [tex]|x-3|\leq 2[/tex]

[-1 ; 5]  a pour centre [tex]a=\dfrac{-1+5}{2} =2[/tex] et [tex]r =\dfrac{5-(-1)}{2}=3[/tex]

On a donc [tex]|x-2|\leq 3[/tex]

[-6 ; -2] a pour centre [tex]a=\dfrac{-6-2}{2} =-4[/tex] et [tex]r =\dfrac{-2-(-6)}{2}=2[/tex]

On a donc [tex]|x+4|\leq 2[/tex]

Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.