Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.

Bonjour pouvez-vous m’aider pour mon exercice merci .
Soit n un entier positif. On veut prouver que
(n + 1)(n+4) est divisible par 2.
1. 1er cas : si n est un nombre pair
On peut alors écrire n=2k (où k est un entier). Prouver
alors que (n + 1)(n + 4) est divisible par 2.
2.2 cas : si n est un nombre impair
On peut alors écrire n = 2k + 1 (où k est un entier).
Prouver alors que (n + 1)(n + 4) est divisible par 2.
3. Conclure.

Sagot :

Tenurf

Bonjour,

Soit n est pair soit n est impair.

Cas 1 - n pair

Il existe k entier tel que n = 2k et alors

(n+1)(n+4)=(2k+1)(2k+4)=2(2k+1)(k+2) est pair donc divisible par 2

Cas 2 - n impair

Il existe k entier tel que n = 2k+1et alors

(n+1)(n+4)=(2k+1+1)(2k+1+4)=2(k+1)(2k+5) est pair donc divisible par 2

Conclusion

Comme on a couver tous les cas possibles pour n, on en déduit que quel que soit n entier (n+1)(n+4) est divisible par 2

merci

Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.