Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.

Bonjour.
Les points D, B, A sont alignés.

BD = 5 cm ; AB + 12 cm et AC = 13 cm.

Démontrer que l'angle BDE est un angle droit.


Bonjour Les Points D B A Sont Alignés BD 5 Cm AB 12 Cm Et AC 13 Cm Démontrer Que Langle BDE Est Un Angle Droit class=

Sagot :

☺️ Salut ☺️

Dans un losange les quatres côtés sont de même longueur. Dans le losange [tex]ECBD[/tex] le côté [tex]BD = 5\;cm[/tex] alors les côtés [tex]CE[/tex] ; [tex]DE[/tex] ; [tex]BC[/tex] mesurent [tex]5\;cm[/tex].

[tex]\rule{8cm}{1mm}[/tex]

Vérifions que l'angle [tex]\widehat{BDE}[/tex] est un angle droit :

Appliquons le théorème de Pythagore pour le triangle [tex]ABC[/tex] et vérifions que la valeur de [tex]BC[/tex] est bien [tex]5\; cm[/tex].

On a :

L'hypoténuse [tex] AC = 13\;cm[/tex] et [tex]AB = 12\;[/tex]

Théorème :

[tex]{AC}^{2} = {AB}^{2} + {BC}^{2}[/tex]

Trouvons la valeur de [tex]BC[/tex] :

[tex]{AC}^{2} = {AB}^{2} + {BC}^{2}[/tex]

[tex]{13\;cm}^{2} = {12\;cm}^{2} + {BC}^{2}[/tex]

[tex]169\;{cm}^{2} = 144\;{cm}^{2} + {BC}^{2}[/tex]

[tex]{BC}^{2} = 169\;{cm}^{2} - 144\;{cm}^{2}[/tex]

[tex] {BC}^{2} = 25\;{cm}^{2}[/tex]

[tex] \sqrt{{BC}^{2}} = \sqrt{25\;{cm}^{2}}[/tex]

[tex] \boxed{\boxed{\green{BC = 5\;cm}}}[/tex]

[tex]\rule{8cm}{1mm}[/tex]

Conclusion :

Puisque la valeur de [tex]BC[/tex] est bien [tex]5\;cm[/tex] alors l'angle [tex]\widehat{BDE}[/tex] est un angle droit.

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.