Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Bonjour, est-ce que vous pourriez m'aider en Math parce que j'y arrive pas. Il faut faire l'exercice 1 et 2.
Merci de pouvoir m'aider. ​


Bonjour Estce Que Vous Pourriez Maider En Math Parce Que Jy Arrive Pas Il Faut Faire Lexercice 1 Et 2 Merci De Pouvoir Maider class=

Sagot :

☺ SALUT ☺

Pour prouver qu'un triangle existe ou pas on utilise l'inégalité triangulaire.

• Si la somme des longueurs des deux côtés les plus petits du triangle est supérieure à la longueur du plus grand côté, le triangle peut exister.

• Si la somme des longueurs des deux côtés les plus petits du triangle est inférieure à la longueur du plus grand côté, le triangle ne peut exister.

[tex]\rule{8cm}{1mm}[/tex]

Dans chacun des cas suivants, prévoyons si le triangle existe ou non, et justifions la réponse :

Cas d'un triangle [tex]RTU[/tex] tel que [tex]RT = 12\;cm[/tex] , [tex]TU = 23\;cm[/tex] et [tex]RU = 15\;cm[/tex].

• Le côté [tex][TU][/tex] est le plus grand des côtes du triangle.

[tex]\blue{TU = 23\;cm}[/tex]

[tex]\blue{RT + RU} = 12\; cm + 15\;cm[/tex]

[tex]\green{RT + RU = 27\;cm}[/tex]

Or [tex]\pink{27\;cm > 23\;cm}[/tex] donc [tex]\blue{RT + RU} > \green{TU} [/tex]

Conclusion :

Puisque [tex]\blue{RT + RU} > \green{TU} [/tex], le triangle [tex]\green{RTU}[/tex] existe.

[tex]\rule{8cm}{1mm}[/tex]

Cas d'un triangle [tex]MNP[/tex] tel que [tex]NP = 16\;mm[/tex] , [tex]MP = 3\;cm[/tex] et [tex]MN = 1\;cm[/tex].

• Le côté [tex][MP][/tex] est le plus grand des côtes du triangle.

[tex]\blue{MP = 3\;cm}[/tex]

[tex]\blue{NP + MN} = 1,6\; cm + 1\;cm[/tex]

[tex]NP + MN = 2,6\;cm[/tex]

Or [tex]\pink{2,6\;cm < 3\;cm}[/tex] donc [tex]\blue{NP + MN} < MP [/tex]

Conclusion :

Puisque [tex]\blue{NP + MN} < \green{MP} [/tex], le triangle [tex]\green{MNP}[/tex] ne peut exister.

[tex]\rule{8cm}{1mm}[/tex]

Cas d'un triangle [tex]LAC[/tex] tel que [tex]LA = 1,2\;dm[/tex] , [tex]AC = 10;cm[/tex] et [tex]LC = 2,7\;mm[/tex].

• Le côté [tex][LA][/tex] est le plus grand des côtes du triangle.

[tex]\blue{LA = 12\;cm}[/tex]

[tex]\blue{AC + LC = 10\; cm + 2,7\;cm}[/tex]

[tex]\green{AC + LC = 12,7\;cm}[/tex]

Or [tex]\pink{12,7\;cm > 12\;cm}[/tex] donc [tex]\blue{AC + LC} > \green{LA} [/tex]

Conclusion :

Puisque [tex]\blue{AC + LC} > \green{LA}[/tex], le triangle [tex]\green{LAC}[/tex] exister.

View image barthyanastro007
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.