Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.
Sagot :
1.
[tex]\overrightarrow{AB}[/tex] dirige (AB)
[tex]\overrightarrow{AB}(5+2 ; 2+3)\\\overrightarrow{AB}(7; 5)\\[/tex]
Une équation cartésienne de droite est de la forme ax + by + c = 0
avec pour vecteur directeur [tex]\vec{u}(-b;a)[/tex]
Ainsi
5x-7y+c=0
et B(5;2) vérifie l'equation cartesienne de (AB)
5×5-7×2+c=0
25-14+c = 0
c = -11
Une équation cartésienne de(AB) est :
5x - 7y - 11 = 0
2.
[tex]\overrightarrow{CD}(6-3; -5+1)\\\overrightarrow{CD}(3;-4)\\[/tex]
[tex]\overrightarrow{CD}.\overrightarrow{AB}=3\times 7+(-4)\times 5\\\overrightarrow{CD}.\overrightarrow{AB}=21-20\\\overrightarrow{CD}.\overrightarrow{AB}=1[/tex]
Le produit scalaire [tex]\overrightarrow{CD}.\overrightarrow{AB}[/tex] n'est pas nul , donc [tex]\overrightarrow{CD}[/tex] n'est pas normal à (AB).
Déterminons l'équation cartésienne de la perpendiculaire à (AB) passant par E.
Soit M(x; y) un point de cette perpendiculaire alors
[tex]\overrightarrow{EM}.\overrightarrow{AB}=0[/tex]
[tex](x-10)\times7+(y+1)\times 5=0\\7x-70+5y+5=0\\7x+5y-65=0[/tex]
Une équation cartésienne de la perpendiculaire à (AB) passant par E est :
7x+5y-65=0
Le projeté orthogonal de E sur (AB) est le point d'intersection entre (EM) et (AB)
[tex]\left \{ {{5x-7y-11=0} \atop 7x+5y-65=0}} \right. \\\\\left \{ {{25x-35y-55=0} \atop 49x+35y-455=0}} \right. \\\\\\\left \{ {{5x-7y-11=0} \atop 74x-510=0}} \right. \\\\\\\left \{ {{5x-7y-11=0} \atop x=\frac{255}{37} }} \right. \\\\\left \{ {{5\times \frac{255}{37} -7y-11=0} \atop x=\frac{255}{37} }} \right. \\\\\left \{ {{\frac{268}{37} -7y=0} \atop x=\frac{255}{37} }} \right. \\\\\left \{ {{y=\frac{124}{37} } \atop x=\frac{255}{37} }} \right. \\\\[/tex]
Les coordonnées du projeté orthogonal de E sur (AB) sont [tex](\frac{255}{37};\frac{124}{37} )[/tex]
4. On cherche une droite parallèle à (EM) passant par G(12;7)
Elle a le même vecteur directeur et les coordonnées de G vérifient l'équation de la droite.
7x+5y+c=0
7×12+5×7+c=0
119+c=0
c=-119
7x+5y-119=0 est une équation cartésienne de la perpendiculaire à (AB) passant par G.
Si y = 0 alors 7x-119=0
7x=119
x=17
Vérifions si F(17;0) appartient à (AB)
5×17-7×0-11=74
Les coordonnées de F ne vérifient par l'équation cartésienne de (AB).
Le point F(17;0) n'appartient pas à (AB) est son projeté orthogonal sur (AB) est le point G(12;7)

Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.