Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.
Sagot :
Bonjour,
c)
Faisons l'addition des deux équations, en prenant soin de prendre m différent de -1 et 1 (sinon c'est pas défini!)
[tex]a+b-ab+(ab+a+b+1)=\dfrac{2m-1-m(m+2)}{m^2-1}=\dfrac{-m^2+4m-1}{m^2-1}\\\\<=> 2(a+b)+1=\dfrac{-m^2+4m-1}{m^2-1}\\ \\<=>a+b=\dfrac{-m^2+4m-1-m^2+1}{2(m^2-1)}=\dfrac{2m}{m^2-1}[/tex]
et, de la première équation, en remplaçant a+b
[tex]ab=\dfrac{2m-2m+1}{m^2-1}=\dfrac{1}{m^2-1}[/tex]
Donc nous savons que a et b sont solutions de l'équation suivante:
[tex]x^2-\dfrac{2m}{m^2-1}x+\dfrac{1}{m^2-1}=0[/tex]
Calculons le discriminant
[tex]\Delta=\dfrac{4m^2-4(m^2-1)}{(m^2-1)^2}=\left(\dfrac{2}{m^2-1}\right)^2\\\\x_1=\dfrac{m-1}{m^2-1}=\dfrac{1}{m+1}\\\\x_2=\dfrac{m+1}{m^2-1}=\dfrac{1}{m-1}\\\\[/tex]
Donc les solutions sont
(1/(m+1);1/(m-1)) et (1/(m-1);1/(m+1))
Merci
PS: on aurait pu remarquer que
[tex]ab=\dfrac{1}{m^2-1}=\dfrac{1}{m+1}\times \dfrac{1}{m-1} \\ \\\dfrac{1}{m+1}+\dfrac{1}{m-1} =\dfrac{2m}{m^2-1}[/tex]
et donc éviter de passer par le discriminant.
Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.