Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.
Sagot :
Bonjour,
aire du rectangle = (x-3)(x+4) = x²+4x-3x-12 = x²+x-12
aire du carré = x²
aire du rectangle = aire du carré
⇒ x²+x-12 = x²
⇒ x²-x²+x = 12
⇒ x = 12
les aires du triangle et du carré sont égales quand x=12
☺ Salut ☺
Soit [tex]x[/tex], un nombre supérieur à [tex]4[/tex].
On considère le rectangle de longueur [tex]x + 4[/tex] et de largeur [tex]x - 3[/tex]
et le carré de côté égal à [tex]x[/tex].
On sait que l'aire d'un rectangle est égale à longueur multiplié par largeur et l'aire d'un carré est égale côté au carré.
Ou [tex]A_{R} = L \times l[/tex] et [tex]A_{C} = {C}^{2}[/tex]
•*• Calculons pour quelle(s) valeur(s) de [tex]x[/tex] l'aire du rectangle et du carré sont égales :
• Cherchons l'aire du rectangle :
[tex]A_{R} = L \times l[/tex]
[tex]A_{R} = (x + 4)(x - 3)[/tex]
[tex]A_{R} = {x}^{2} - 3x + 4x - 12[/tex]
[tex]\blue{A_{R} = {x}^{2} + x - 12}[/tex]
• Cherchons l'aire du carré :
[tex]A_{C} = {C}^{2}[/tex]
[tex]\green{A_{C} = {x}^{2}}[/tex]
•*• Trouvons [tex]x[/tex] :
[tex]{x}^{2} + x - 12 = {x}^{2}[/tex]
[tex]{x}^{2} - {x}^{2} + x = 12[/tex]
[tex]\green{\boxed{\red{\boxed{\blue{x = 12}}}}}[/tex]
Vérification :
[tex]A_{R} = (x + 4)(x - 3)[/tex]
[tex]A_{R} = (12 + 4)(12 - 3)[/tex]
[tex]A_{R} = (16)(9)[/tex]
[tex]A_{R} = \red{144}[/tex]
et
[tex]A_{C} = {C}^{2}[/tex]
[tex]A_{C} = {12}^{2}[/tex]
[tex]A_{C} = \red{144}[/tex]
Conclusion :
L'aire du rectangle et du carré sont égales pour [tex]\blue{x = 12}[/tex] .
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.