Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Obtenez des réponses détaillées à vos questions de la part d'une communauté dédiée d'experts sur notre plateforme. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.
Sagot :
Explications étape par étape:
Bonjour, il te faut connaître la méthodologie d'une récurrence. Si, de base, les fondamentaux ne sont pas acquis, toutes les autres récurrences te seront impossibles. Pour initialiser, je te laisse procéder.
Pour l'hérédité, tu fixes un entier naturel n > ou = à 1 conformément à l'énoncé. On suppose la propriété vraie au rang, on prouve sa véracité au rang n+1.
Par hypothèse, Somme de k allant de 1 à n de k*k ! = (n+1)! - 1. En ajoutant le (n+1)ème terme de la somme, elle part de 1 à n+1, et on obtient (n+1)! - 1 + (n+1)(n+1)! = (n+2)(n+1)! - 1 = (n+2)! - 1 (propriété des factorielles).
Remarque : Tu pouvais aussi y parvenir sans récurrence, par le biais d'une astuce, en écrivant k = k + 1 - 1.
Somme de k allant de 1 à n de k*k ! = Somme de k allant de 1 à n de (k+1-1)*k! = Somme de k allant de 1 à n de (k+1)! - k!. Cette somme est télescopique, tous les termes s'annulent, sauf le 1er et le dernier, il reste donc (n+1)! - 1
Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.