Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.

Bonjour, la question 2 je n'y arrive pas. J'aimerais que quelqu'un m'explique mercu d'avance et bonne journée

Bonjour La Question 2 Je Ny Arrive Pas Jaimerais Que Quelquun Mexplique Mercu Davance Et Bonne Journée class=

Sagot :

Réponse :

Bjr,

f définie sur R

2 x² + x + 1 ne s'annule donc pas et reste positif.

f(x) ≥ -1 ⇔ - 5 x + 1 ≥ - 2 x² - x - 1

f(x) ≥ -1 ⇔ 2 x² - 4 x + 2 ≥ 0

f(x) ≥ -1 ⇔ x² - 2 x + 1 ≥ 0

f(x) ≥ -1 ⇔ (x - 1)² ≥ 0

(x - 1)² étant toujours positif, on a bien f(x) ≥ -1 pour tout x réel

Ensuite

f(x) < 4 ⇔ - 5 x + 1 < 8 x² + 4 x + 4

f(x) < 4 ⇔ 8 x² + 9 x + 3 > 0

Discriminant négatif, polynôme strictement positif, alors on a par équivalence

f(x) < 4 pour tout x réel

Pour tout x réel, -1 ≤ f(x) < 4

Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.