Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
Bonjour,
On va commencer par f
1 et -2 ont racines donc on peut écrire f(x)=a(x-1)(x+2), avec a un réel
et on cherche a tel que f(0)=1 car le point (0,1) est sur le graphe de f
f(0)=-2a=1 <=> a = -1/2
donc
[tex]f(x)=\dfrac{(1-x)(x+2)}{2}[/tex]
Pour g, le sommet est en (1,1) donc c'est de la forme
[tex]g(x)=a(x-1)^2+1[/tex]
et comme g(0)=2=a+1 <=> a=1, donc
[tex]g(x)=(x-1)^2+1\\\\[/tex]
il n'y a pas de factorisation possible comme le graphe ne coupe pas l'axe des abscisses il n y a pas de solutions réelles à g(x)=0
pour h, c'est une racine double donc
[tex]h(x)=a(x+4)^2[/tex]
et h(0)=4=16a <=> a = 1/4, donc
[tex]h(a)=\dfrac{(x+4)^2}{4}[/tex]
Merci
Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.