Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.
Sagot :
Réponse :
U0 = 1/2 et Un+1 = 3Un/(1+2Un) pour tout entier naturel n
1) (a) calculer U1 et U2
U1 = 3U0/(1+2U0) = 3*1/2/(1+2*1/2) = 3/2/2 = 3/4
U2 = 3U1/(1 + 2U1) = 3*3/4/(1+2*3/4) = 9/4/5/2 = 9/10
2) démontrer, par récurrence, que pour tout entier naturel n, Un > 0
P(n) : Un > 0
Initialisation : vérifions que P(0) est vraie
U0 = 1/2 > 0 donc P(0) est vraie
Hérédité : soit un entier naturel n ≥ 0
supposons que P(n) est vraie c'est à dire Un > 0 et montrons que P(n+1) est vraie c'est à dire Un+1 > 0
Un > 0 ⇔ 3Un > 0 ⇔ 3Un/(1+2Un) > 0/(1+2Un) ⇔ 3Un/(1+2Un) > 0
donc Un+1 > 0 donc P(n+1) est vraie
Conclusion : P(0) est vraie et P(n) est héréditaire au rang 0
donc par récurrence P(n) est vraie pour tout entier naturel n
3) on admet que pour tout entier naturel n, Un < 1
(a) démontrer que la suite (Un) est croissante
Un+1/Un = 3Un/(1+2Un)/Un
= 3Un/Un(1+2Un)
= 3/(1+2Un) or Un > 0 donc 2Un > 0 donc 1+ 2Un > 1
donc 1 + 2Un > 0 et 3 > 0 donc Un+1/Un > 0 donc la suite (Un) est croissante sur N
(b) démontrer que la suite (Un) converge
(Un) est croissante sur N
Un < 1 majorée
donc la suite (Un) est convergente
4) Vn = Un/(1 - Un) pour tout entier naturel n
(a) montrer que la suite (Vn) est une suite géométrique de raison 3
Vn+1 = Un+1/(1 - Un+1)
= 3Un/(1+2Un)/(1 - (3Un/(1+2Un))
= 3Un/(1+2Un)/(1 + 2Un - 3Un)/(1+2Un))
= 3Un/(1+2Un)/(1 - Un)/(1+2Un))
= 3Un x (1+2Un)/(1+2Un)(1 - Un)
Vn+1 = 3Un/(1 - Un)
donc Vn+1/Vn = 3Un/(1 - Un)/Un/(1 - Un) = 3Un(1-Un)/Un(1-Un) = 3
donc la suite (Vn) est une suite géométrique de raison 3
(b) exprimer pour tout entier naturel n, Vn en fonction de n
Vn = V0 x qⁿ
V0 = U0/(1 - U0) = 1/2/(1 - 1/2) = 1
Donc Vn = 3ⁿ
(c) en déduire que, pour tout entier naturel n, Un = 3ⁿ/(3ⁿ + 1)
Vn = Un/(1 - Un) ; Vn(1 - Un) = Un ; Vn - VnUn = Un
d'où Vn = Un + VnUn donc Vn = Un(1+Vn) donc Un = Vn/(1+Vn)
soit Un = 3ⁿ/(1+3ⁿ)
(d) déterminer la limite de la suite (Un)
lim Un = lim (3ⁿ/(1+3ⁿ) or lim 3ⁿ/3ⁿ = 1
n→ + ∞ n→ + ∞
Explications étape par étape
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.