Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés dans divers domaines sur notre plateforme. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.
Sagot :
Réponse :
U0 = 1/2 et Un+1 = 3Un/(1+2Un) pour tout entier naturel n
1) (a) calculer U1 et U2
U1 = 3U0/(1+2U0) = 3*1/2/(1+2*1/2) = 3/2/2 = 3/4
U2 = 3U1/(1 + 2U1) = 3*3/4/(1+2*3/4) = 9/4/5/2 = 9/10
2) démontrer, par récurrence, que pour tout entier naturel n, Un > 0
P(n) : Un > 0
Initialisation : vérifions que P(0) est vraie
U0 = 1/2 > 0 donc P(0) est vraie
Hérédité : soit un entier naturel n ≥ 0
supposons que P(n) est vraie c'est à dire Un > 0 et montrons que P(n+1) est vraie c'est à dire Un+1 > 0
Un > 0 ⇔ 3Un > 0 ⇔ 3Un/(1+2Un) > 0/(1+2Un) ⇔ 3Un/(1+2Un) > 0
donc Un+1 > 0 donc P(n+1) est vraie
Conclusion : P(0) est vraie et P(n) est héréditaire au rang 0
donc par récurrence P(n) est vraie pour tout entier naturel n
3) on admet que pour tout entier naturel n, Un < 1
(a) démontrer que la suite (Un) est croissante
Un+1/Un = 3Un/(1+2Un)/Un
= 3Un/Un(1+2Un)
= 3/(1+2Un) or Un > 0 donc 2Un > 0 donc 1+ 2Un > 1
donc 1 + 2Un > 0 et 3 > 0 donc Un+1/Un > 0 donc la suite (Un) est croissante sur N
(b) démontrer que la suite (Un) converge
(Un) est croissante sur N
Un < 1 majorée
donc la suite (Un) est convergente
4) Vn = Un/(1 - Un) pour tout entier naturel n
(a) montrer que la suite (Vn) est une suite géométrique de raison 3
Vn+1 = Un+1/(1 - Un+1)
= 3Un/(1+2Un)/(1 - (3Un/(1+2Un))
= 3Un/(1+2Un)/(1 + 2Un - 3Un)/(1+2Un))
= 3Un/(1+2Un)/(1 - Un)/(1+2Un))
= 3Un x (1+2Un)/(1+2Un)(1 - Un)
Vn+1 = 3Un/(1 - Un)
donc Vn+1/Vn = 3Un/(1 - Un)/Un/(1 - Un) = 3Un(1-Un)/Un(1-Un) = 3
donc la suite (Vn) est une suite géométrique de raison 3
(b) exprimer pour tout entier naturel n, Vn en fonction de n
Vn = V0 x qⁿ
V0 = U0/(1 - U0) = 1/2/(1 - 1/2) = 1
Donc Vn = 3ⁿ
(c) en déduire que, pour tout entier naturel n, Un = 3ⁿ/(3ⁿ + 1)
Vn = Un/(1 - Un) ; Vn(1 - Un) = Un ; Vn - VnUn = Un
d'où Vn = Un + VnUn donc Vn = Un(1+Vn) donc Un = Vn/(1+Vn)
soit Un = 3ⁿ/(1+3ⁿ)
(d) déterminer la limite de la suite (Un)
lim Un = lim (3ⁿ/(1+3ⁿ) or lim 3ⁿ/3ⁿ = 1
n→ + ∞ n→ + ∞
Explications étape par étape
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.