Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.
Sagot :
Réponse :
1) en posant t = x² écrire une équation (E2) équivalente à (E1) et résoudre cette équation
(E2) : t² - 6 t + 8 = 0
⇔ t² - 6 t + 8 + 9 - 9 = 0 ⇔ t² - 6 t + 9 - 1 = 0
⇔ (t - 3)² - 1 = (t - 3 +1)(t - 3 - 1) = 0 ⇔ (t - 2)(t - 4) = 0 produit de facteurs nul ⇔ t - 2 = 0 ⇔ t = 2 ou t - 4 = 0 ⇔ t = 4 ⇔ S = {2 ; 4}
2) déduire alors de la question précédente la résolution de (E1)
x² = 2 ⇔ x = √2 ou x = - √2
x² = 4 ⇔ x = 2 ou x = - 2
les solutions de (E1) sont : S = {- 2 ; - √2 ; √2 ; 2}
3) Montrer que x⁴ - 6 x² + 8 = (x² - 4)(x² - 2) et expliquer en quoi cette factorisation permet de vérifier la résolution de l'équation bicarrée
x⁴ - 6 x² + 8 = (x²)² - 6 x² + 8 +9 - 9 = (x²)² - 6 x² + 9 - 1 = (x² - 3)² - 1
= (x² - 3 + 1)(x² - 3 - 1) = (x² - 2)(x² - 4)
cette factorisation nous permet de résoudre (E1) car le produit de facteurs nul donne x² - 2 = 0 ou x² - 4 = 0 on a donc 4 solutions
4) résoudre l'inéquation g(x) < 0
g(x) < 0 ⇔ x⁴ - 6 x² + 8 < 0 ⇔ (x² - 4)(x² - 2) < 0
x - ∞ - 2 - √2 √2 2 + ∞
x² - 4 + 0 - - - 0 +
x² - 2 + + 0 - 0 + +
P + 0 - 0 + 0 - 0 +
l'ensemble des solutions de l'inéquation g(x) < 0 est :
S = ]- 2 ; - √2[U]√2 ; 2[
Explications étape par étape
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.