Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Bonjours j'ai encore du mal avec cette exercices sur les suites possible d'avoir de l'aide? Merci d'avances !!

Bonjours Jai Encore Du Mal Avec Cette Exercices Sur Les Suites Possible Davoir De Laide Merci Davances class=

Sagot :

Tenurf

Bonjour,

1. La fonction est définie pour tout x réel

[tex]g(x)=3e^{2x}-5e^x-x+2[/tex]

Et elle est dérivable car composée/somme de fonctions qui le sont.

a. prenons x réel quelconque

[tex]g'(x)=6e^{2x}-5e^x-1=6\left( e^x \right)^2-5e^x-1[/tex]

Cela nous ramène à factoriser un polynôme de degré deux, dont on peut vérifier que 1 est une racine évidente donc,

[tex]6x^2-5x-1=(x-1)(6x+1)[/tex]

Ce qui revient à dire que

[tex]g'(x)=(e^x-1)(6e^x+1)[/tex]

Remarque: Sinon, on aurait pu aussi développer l'expression de droite et vérifier qu'elle est bien égale à g'(x).

b.

[tex]6e^x+1[/tex] est toujours positif pour x réel

et comme la fonction exponentielle est strictement croissante

[tex]e^x-1>0 <=> e^x>1<=>x>0[/tex]

[tex]\left|\begin{array}{c|ccc}x&&0&&\\---&---&---&---\\g'(x)&-&0&+\\---&---&---&---\\g(x)&\searrow&g(0)&\nearrow\end{array}\right|[/tex]

Donc g admet un minimum en 0 et sa valeur est g(0)=3-5+2=0

Ce qui veut dire que pour tout x réel g(x) est positif.

c. Prenons n un entier quelconque

[tex]u_{n+1}-u_{n}=3e^{2u_n}-5e^{u_n}+2-u_n=g(u_n)\geq 0[/tex]

Donc la suite est croissante.

Merci

Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.